
TANGLED DESIGN HIERARCHIES

Hacking the Essence of Software

ENCODING AND DECODING TURING MACHINES AND META-MACHINES

Kent D. Palmer, Ph.D.

Orange CA 92856 USA

714-633-9508

kent@palmer.name

Copyright 2012 K.D. Palmer.

All Rights Reserved. Not for distribution.

Started 6/9/2012; Version 0.13; 8/12/2012; th01a13.doc

Corrected 20121009, Added to 20121013

Keywords: domain specific languages, consistency, completeness, clarity, verifiability,

validity, coherence, comprehensiveness

Problem Statement

Years ago in Wild Software Meta-systems I created a Design Domain Specific Language which

went against the grain of UML/SysML graphical representations for Software Design. Then much

later I did my second Ph.D. dissertation on Emergent Design, and took what I learned back to my

languages and improved them, but the number of statements in the language went from 700 some

to 1700 some statements. And while I showed the consistency of the original language via various

diagrams in the original definition, I did not know how to show the new version of the languages

was self-consistent. I have been looking for a way to do this ever since. Design languages are not

closed like General Programming Languages and so the same techniques that suffice to show

their consistency does not suffice for this new class of open and extensible languages that could

exist at the design level as Design Domain specific languages.

This paper explores a new way to validate the Design DSLs of the ISEM language. It uses tangled

Hierarchies first seen in the InteGreat tool from eDevTech, but it goes on to look at the relation

between the State Machine, Petri Net, Turing Machine and the addition to that of the Capsule as a

way of looking at the synthesis of the computing infrastructure underlying the tangled hierarchies.

These two approaches are then reconciled though the various ways of looking at the minimal

system that were developed in my Emergent Design dissertation.

Recently inadvertently on my search for a way to validate the ISEM Design Domain Specific

languages I ran into a tool called InteGreat created by Asif Sharif which showed me a possible

path forward in solving this problem for which I could find no solution in the literature. This tool

has tangled semantic hierarchies. Basically what you do is create various hierarchies of different

types related to Business Analysis and then you can drag and drop these into hierarchies that

establish relations between analytical elements from those separate hierarchies. This establishes

semantic relations between the elements that are related to each other in the tangled hierarchy that

Tangled Hierarchies Kent Palmer

 2

represents the composite model. I was given a briefing by Asif Sharif of eDev Tech concerning

the semantic structure of the tool, which is not featured but is treated as a background resource in

the tool which gives it a lot of representational power that is drawn upon to support document

generation, querying, and simulation capabilities. He expressed the wish to take his tool to the

next level of representational power and I mentioned that this would probably be best expressed

in the tradition by the work of Charles Peirce in the idea of Thirds as expressed in the hierarchy

of philosophical principles Firsts (isolate), Seconds (relata) and Thirds (continua). To these B.

Fuller added Synergy (Fourths) and Integrity (Fifths). And we talked about the fact that the

solution to this problem perhaps resides in the idea that tangled hierarchies of various types

themselves could be tangled at the next level. However, on further thought this does not take into

account that the next level is emergent and has its own properties and although it may be a

tangling of tangled hierarchies it must also be more than that. And one of the things that is needed

is to work out what that more could be based on the theory of Peirce and others as noted in my

Emergent Design dissertation.

So the immediate interest here is to explore the relation between the idea of tangled hierarchies as

a way of creating sematic models due to Asif Sharif and embodied in InteGreat, and the idea of

Domain Specific Design Languages such as the new version of the Integral Software Engineering

Methodology (ISEM) languages. To do this we need to give some theoretical background. From

the beginning I have advocated using George Klir’s Architecture of Systems Problem Solving

(ASPS) as a basis for thinking about Software Design structures. And my own work on the

relation between Systems and Meta-systems as well as General Schemas Theory comes directly

out of attempting to work with the Formal Structural System of Klir to describe design

possibilities. This grounding of Software Engineering in General Systems Theory I believe is a

crucial move that few make, but it increases our leverage on the design problem space. So I take

Klir’s ASPS as the assumed background for everything that I am saying. And the crucial piece

that I take from Klir is the Methodological Distinctions which relate to the ordering of

background variables within our systems models. These orderings are: no order, partial order,

partial order with distance and linear order without distance, full linear order with distance, and

adding to those combinatoric orders. This forms a lattice in which linear order without distance

and partial order with distance are duals within the lattice, while all other elements in the lattice

are self-dual. What we note is that in Software Engineering we are progressively adding order to

systems we design, and so we start off with requirements (functional and qualitative or

performance related) which have no order. But then Agent and Function viewpoints are partially

ordered. Data and Event viewpoints are fully ordered. Test is combinatorically ordered. Minimal

methods are bridges between viewpoints. They are all conditioned by the duality between linear

order without distance and partial order with distance. They are all either two way bridges or two

one way bridges. So for instance there is a single one-way bridge between data and function, but

if you look at it from the point of view of data you see object oriented paradigm, but if you look

at it from the point of view of function you see dataflows. Between Agent and Data there is the

DARTS method of representing parallelism of Gomma. Between Agent and Event there is the

Worldview/Scenario sequence diagram that allows relativistic structuring of systems in the face

of a lack of a global clock. Between Agent and Function there are however two bridges, on is the

Virtual Layered Machine and the other is the Use Case. Between Event and Function there is the

two bridges of State Machine and Petri Net. Between Data and Event there are the various ways

of representing spacetime intervals which are either in terms of Riemann (spacetime) or

Minkowski (timespace). For in computing Event is the representation of Time and Memory with

Data is the representation of Space.

Now the whole purpose of Design Languages is to get above the delocalization that occurs in

Code where objects are smeared around within the code in various places. Note that code is linear

Tangled Hierarchies Kent Palmer

 3

and the distance between any given line of code and the next is a measure of performance. Note

that relations between lines of code spread across agents or processors are partially ordered. If

code threads are switched out by the operating system the relation between any one line of code

and the next at execution time is indeterminate. But it is the performance given these partial

orders that is significant. On the other hand individual lines of code although linearly ordered

have no necessary measure between them. So the duality between these two orders in the lattice

comes to play a very significant role with respect to delocalization of objects within the code and

their representation and interaction during execution. Design attempts to take this delocalization

out of play so we can see the design objects all in their set-like purity above the fray of the

execution of the actual code on the hardware with its operating system. But as soon as we start

executing the code as a binary then the code becomes a mass-like blob and essentially at that

point we lose control and all kinds of unexpected things occur during execution. These

unexpected side effects are mostly problems and so we consider them defects. But these defects

occur because we cannot clearly relate the set-like designs to the mass-like executables in their

actual operation on hardware and within operating systems (i.e. meta-systems). Many of these

problems occur because in our tradition there is a set bias and mass-like phenomena are

suppressed. But the reality is that sets and masses are duals, and each has their own logics, but

these are not developed in our tradition. Thus in some way the duality between set/mass, or

system/meta-system is only historical and cultural and is not ultimately real because masses have

logics too, and meta-systems can be formalized using Turing machines just like

systems/processes can. Basically in Design we are trying to get a view of what the structure of the

system is prior to delocalization and mass-like executability constraints.

At this time our designs are for the most part by consensus of the Software Engineering

community represented by UML and perhaps SysML or other similar representations. My

concern with this is the poverty of the semantics which is based on entities with types and

relations which for the most part are binary relations or via connections though is_a or has_a

relations between objects. My own suggestion is that we construct a Tractatus like world of

design facts as suggested by the early Wittgenstein. These facts are represented by statements

because it was Frege that said that meaning is anchored in the whole statement rather than any of

the parts whether they be words, or phrases, or the syntactic relations between these. These

statements can be made regular by imposing a particular grammatical form that can express 80

percent of the necessary meaning for expressing design facts. We express this minimal grammar

in columns in a spreadsheet so that it is easy to construct new fact statements and keep the

grammar straight. The basic idea of a domain language is that you can create new domain specific

statements on the fly to express what is needed to describe a particular domain or proscribe a

particular design solution. As technology changes we need to continually adapt to new

circumstances in terms of the technological infrastructure, and also we need to continually adapt

to new contexts as we create new applications in new domains. Even recreating an application

with new technologies, methods and practices demands new domain specific descriptions. But the

problem is that if the languages are not closed then they cannot be compiled or interpreted,

without changing the compiler or interpreter. The problem of how to make general purpose

programing languages extensible to cover new kinds of domain statements or design constructs is

still an open research problem. But this problem is exacerbated if we try to make the semantics

richer than merely composing components or producing network relationships. Basically we need

to be able to construct multipart relationships in single statements. And it is this that takes us into

the realm of what Peirce called the Third, i.e. of mediation or continuity, beyond mere

relationships. Since the entity is First, i.e. an isolatable element, and the Second is a relata, which

is a connection between isolate, then the Third is a mediation, a third kind of thing that is neither

an entity nor a relation, and these are represented by Peirce in his theory as signs. Basically Peirce

is a Kantian who is attempting to deal with the dialectical mediations uncovered by Hegel that

Tangled Hierarchies Kent Palmer

 4

were implicit in the categories of Kant and in Kant’s critical method. Peirce was a logician and

basically invented modern symbolic logic, but saw that in order to connect logic to the world it

was necessary to develop a semiotic. Just like the isolata of the design entity is a point in

geometry, and the relata of the relationship is a line, so the continua of the Third as a mediation is

like a triangle, i.e. the two dimensional minimal solid. Thus, the sign is threefold composed of the

entity, its interpretation, and the sign element. What we need to understand is that for Peirce it is

logic that is the embodiment of the three fold relation of the continua. We see this in the

syllogism. Peirce noticed that we can take the statements that are in the syllogism in different

orders to represent deduction, induction and abduction. Abduction is the production of the

hypothesis and thus the basis of the Scientific method. Thus for Peirce it is logic that is the motor

of scientific progress. The combinatorics of Logic establishes as triangle of triangles. Two of the

paths sport entailments and the third is a speculative projection. Both entailments and projections

are continua. We connect the symbols of symbolic logic to the context of the statements via the

semiotics which are themselves triangular connecting interpretants to objects via the sign that

indicates. It is via precission that we understand the parts of the synthesis without taking it apart

via analysis. And thus we recognize the articulation of the parts (isolata) within the embrace of

the continua without the precision of analytical dispersion. Relata only really appear between the

isolata, and fields are really not reducible to discrete relata, even if they are n-ary. We can see this

in the compound statement which holds a field of meaning within a complex n-ary structure. It is

a scandal that we have no real understanding of meaning, but that is due in part to the fact that it

is a field like phenomena which is at least a third, as Peirce suggests. Field phenomena are mass

like, and in this way it is like the attributes that span in a mass like way the isolata. When we

think about it characteristics of attributes that span isolate is one bracket and the relata are equally

definitive, but the field of the continua is again mass-like and is the other capstone which is just

as obscure to us as the characteristics of attributes. The syntax is the structural articulation of the

patterning of the words but the semantic lode reverberates in the sentence which when complex

contains multiple clauses indicating multiple simultaneous relations. It is this ability to give

sematic depth to our architectural structures that we lack when we use representations with only

relata and no continua. The ISEM language allows prepositions to establish these multiple

simultaneous relations. It is a pigeon language targeted to express domain relations in a restricted

grammar.

But the problem is then to show that the statements of the language are comprehensive. We are

not really expecting completeness because we expect new statements to be created on the fly to

express new domain or architectural facts. We are not really expecting consistency because

domains are bundles of points of view, and therefore there can be inconsistencies between

different points of view. We are not really even expecting clarity, because one could depart from

the grammatical schema if necessary when inventing new statements. Thus such a language is by

its very nature para-complete, para-consistent and para-clear. Since it is not a closed language we

cannot appeal to meaning as use either thus disappointing Wittgenstein. However, there may be a

way to view this comprehensiveness of the language that takes into account the necessity of

relating to the field of meaning produced by the continua seen as precission. A hint comes from

Asif Sharif and the use of Tangled Hierarchies in InteGreat. This specific semantic structure has

not been seen in any other tools to date by the author. Basically what occurs is that there is the

creation of architectural hierarchies such as process (function), network (agent), data and event.

These are then dropped into a shared hierarchy such that dropping one element below the other

creates a different sematic relation. In other words if we drop hardware agents, then processes

(functions), then data, then events, then that creates different meanings then if we interchange say

data then functions, or events then data. The semantic relations are implicit given in pre-analyzed

combinatorics of possible hierarchical positions. In a way this uses the combinatorics of Test to

produce the possible semantics of combination of architectural elements. We postulate that it is

Tangled Hierarchies Kent Palmer

 5

tangles of tangles that carry us to the next emergent level beyond mere relata of the sematic load

that different combinations produce. However, this must be an emergent level because the various

tangled hierarchies must themselves be different from each other, like the untangled hierarchies

were. Somehow second order tangling needs to produce the continua not merely higher order

relata. We posit that it is the second order tangling, tangling of tangles, must have a difference

that makes a difference that is synthetic. When we close tangles we get rational knots. We have

run into rational knots before in our definition of the structure of the worldview, so that makes us

hopeful. There are in fact both rational and irrational knots, the difference being whether the knot

can be reduced to a tangle with an equation for the cross-over moves. Continuous tangles that re-

tangle are braids. So we posit that the difference between tangled hierarchies at the level of cross

tangling is that there are created knot, which is itself the model of self-organization. Knots are

organized against themselves. They are continuous yet discrete in their crossings. Thus we

introduce continua, which at the same time has an inherent syntax that is fixed by the table of

knots. So there is a mathematical basis for believing that the tangle of tanged hierarchies are in

fact knotted hierarchies and so there is a higher order effect to take advantage of to get some

leverage on continua. However, how to take advantage of this emergent effect in the mathematics

is not an easy question.

Hypothesis

The hypothesis that we would like to advance is that just like in InteGreat there are hierarchies

associated with the points of view: Requirements (no order), Function and Agent (partially

ordered), Linear Order with out distance and Partial order with Distance are associated with

minimal method duality and decoherence and delocalization. Event and Data (full order), and

Test (combinatoric order which we add to the Methodological Distinctions of Klir). Requirements

are isolated statements in natural language. Functional Hierarchy is a decomposition of functions.

Agent Hierarchy is a decomposition of agents. Agents are associated with concurrence. Data is a

heterarchy of entities depicted by entity relation attribute diagrams. Events are a heterarchy

related by temporal logic. Test is a hierarchy of test cases. In the midst of this lattice of

methodological distinctions there is a component hierarchy that represents the Architecture in

which the viewpoint related elements are tangled. The basis of this component hierarchy is the

network topology of the hardware upon which the software is layered. A system hierarchy

includes both hardware and software elements. The software hierarchy takes the hardware

computing infrastructure as given. Notice that this is a change from previous conceptualizations.

Here component is not identical to the agent hierarchy as is normally assumed. Rather we are

saying that the component hierarchy is the place where the tangling of the other hierarchies occur.

The component hierarchy is a packaging of various relations between elements that appear from

the various perspectives. The component hierarchy is composed of hardware and software

components that are layered. So strictly speaking the component hierarchy is in the hole in the

lattice while the test hierarchy is a kind of order not considered by Klir in his methodological

distinctions.

Both components and test hierarchies are complex but in different ways. The component

hierarchy is complex because it layers elements from the other views. The test hierarchy is

complex due to combinatorics. But we still hold that these hierarchies are linked by crosslinks. So

the satisfies crosslink connects requirements and functions. The implements crosslink connects to

the component hierarchy. The component hierarchy connects by test crosslinks to the tests cases.

The test cases connect by assures crosslinks back to the requirements hierarchy. Now previously

we have been connecting the component hierarchy directly to the agent hierarchy. And this

simplification could still be done as each agent could be considered a component. But this really

belies the difference between modules and components because modules are mere packaging

Tangled Hierarchies Kent Palmer

 6

constructs and not agents. A generalized component can be a module, i.e. just a packaging

construct. This simplification makes things easier to explain but this asymmetry is really probably

more exact and also justified. So we can see from this that there is probably also a mapping from

requirements to agents and these are probably non-functional requirements related to performance

and other Quality of Service issues. We can associate this agent hierarchy with performance

budget hierarchy as the agents are the elements which are the embodiments that are measured

with respect their performance. Components to the extent that they are just packaging really have

no performance per se other than their gross running speed. It is different agent architectures that

changes the performance. So this mapping is also a satisfies crosslink to non-functional

requirements. However, the mapping to components we will call an embodies crosslink rather

than an implements crosslink which comes from the function.

Tangled Hierarchies Kent Palmer

 7

Once we introduce the embodies crosslink as the dual of the implements crosslink then we can ask

Tangled Hierarchies Kent Palmer

 8

what the relation between them and the tests might be. Tests can either test performance or test

functionality and so this split should be noted. Agent to Test is a performs link while Function to

Test is an exercises link. Data and Event hierarchies can also connect via extent and time links.

Extents of Data are represented by Entity Relation Attribute (ERA) Diagrams. Times of Events

are captured by Interval Logic of James Allen or another Temporal Logic. Note in the diagram

we show the various minimal methods that connect the viewpoints on a realtime system. Virtual

Layered Machine and Use Cases connect Function and Agent that are both partially ordered. Two

partially ordered systems together are called a Domain in mathematics. Sequence Diagrams in

UML which we call Worldline and Scenario diagrams connect Agent and Event. DataFlow or

Objects connect Function and Data. Gomma’s DARTS connects Agent and Data. Between Data

and Event is a relativistic Interval, which can be represented either as timespace (Minkowski) or

spacetime (Riemann). If there is no global clock then realtime systems appear as relativistic in the

sense developed by Einstein.

The key point here is that the structure of Software and even Systems architecture is driven by the

possible orders. Orders are layered on as development proceeds. We start with no order and that

appears as requirements statements that are axiomatic to the system. Then we move to partial

ordering, and there are two types of partial orders Agent and Function. The relation between them

can be seen as two one-way bridges. One is the use case, and the other is the virtual layered

machine. Use case connects the agents to the functions in scenarios. User Stories are slices of use

cases. But the virtual layered machine connects functions to agents. The VLM is the set of

operations that would be used to implement the operations as functions within the agents as

computational devices. For any given Use Case there should be a computational machine at a

given level of abstraction that accomplishes the work needed to provide the capability to perform

the functions requested by the user. Thus the VLM represents the computational capability to

perform the functions that support the features needed by the agent. Capability and Features

always go together, and they are what the customers and users see of the combination of agent

and features which are both partially ordered in a domain. The partial ordering allows the

flexibility to do multiple things in different orders and thus what makes the system under design

useful. Since from Wittgenstein’s point of view meaning is use, then how the agent uses the

functions confers their meanings on them. The meaning of the system will come in its use in its

actual operating environment. But meaning becomes possible because there are multiple ways

that agents can use functions that are supported by virtual layered machines that supply the

capabilities that result in features that the users and customers get benefit out of. Use Case is a

particularly strong technique because it takes advantage of the dual partial ordering of agent and

function to not only shape the system from the users perspective but also allows the system

functionality to be developed in different orders according to convenience, and priority rather

than internal dependencies. Where internal dependencies are satisfied then the order of

development can be varied and still attain the same result. Similarly if we know a VLM is needed

to supply the capability that will be used in different orders and with different inputs to supply the

capability to implement the functions needed by the agents then the operators of that VLM can be

done in different orders depending on convenience and priority. However, in both cases we must

take care of the internal essential dependencies in order to avoid having to do so much refactoring

which comes from violating development dependencies and precedents in the order that parts of

the system (operations) are produced. In a sense this flexibility in the order of the production

created by the dual partial ordering of the agents and functions is what Agile methods are taking

advantage of when they break what is to be done down into stories and begin creating parts of the

system in a random order looking for quick and easy things that can be done and demonstrated to

achieve the necessary commitment to move forward in creating the whole system. The inherent

flexibility of systems both in use and in development orders are due to their double partial

ordering. Agency is partially ordered and Functions are partially ordered. The two partially

Tangled Hierarchies Kent Palmer

 9

ordered sets of elements together produces a domain which is partially ordered with a lot of

possible orderings both for use and for production sequences. In a sense this generates freedom

for the users and the developers too. As long as intrinsic architectural precedencies are fulfilled

which are at the core of the system, then any order of use or development that are allowed are

possible. Even when there are these architectural precedencies prototyping and stubbing can give

further freedom to develop in a different order than that dictated by the internal structure of the

application in which some part of it depends intrinsically on another part to be able to work

properly.

Now here we mention two techniques that can help to further enhance this indeterminacy of use

order and development order. One was developed by R. Taylor called C2 which is to suppress

call structure. The bane of reuse and of refactoring is the changes in call structure in applications.

Taylor invented the idea of self-talk, i.e. where modules in the system talk to themselves, and

where other modules listen on broadcast busses to this self-talk and respond. This limits necessity

the call hierarchy structuring the application making reuse much easier because the mutual

dependencies are decreased or made implicit rather than having explicit representations. This is a

brilliant use of indirection in the construction of systems that has not received the recognition it

should have. The other technique is to use expert system structuring to regulate the order of

execution of instructions in the virtual machine. This is done by making it so that the various

operators in the virtual machine have guards on their operands so that the operator only fires

when its guards are activated. This prevents operators within if statements from firing if they do

not have sufficient information to produce a correct answer. Operators are in a while loop of if

statements and order their firing themselves based on the availability of all inputs signified by the

activation of all their guards. This is another form of indirection related to the operands rather

than the operators. But it means that the sequencing of the operators is implicit rather than

explicit in the program and thus the programmer is not determining the order of the calls of

operators, but operators are called in whatever sequence that they can given the availability of the

information they need for their parameters in order to produce a correct result. When that result is

calculated it resets its own guard and thus triggers downstream calculations that are dependent on

it.

When we combine these two techniques with the domain of dual partial ordering of agent and

function then we get a slightly different picture of computing based on indirection rather than

direct calls and determination of the order of programming constructs by the programmer. An

Agent has within it a virtual machine (set of objects with their methods) or the agent is accessing

a virtual machine. Either way we want the agent to engage in self talk, and we want the virtual

machine sequences to be determined by guards on operands. This means that the agent does not

have its own ports by which it gets messages to activate its methods via method calls from other

objects. Rather the agent is connected to a broadcast bus on which it places its self-talk, or it is

listening on a bus to which it has subscribed. The agent does not call methods of other agents

directly. Rather it says to itself what it would like to happen, and those listening can respond if

their constraints are satisfied. This allows new agents with different virtual machines to be added

and subtracted to the system without the necessity of refactoring. It makes the system inherently

adaptable because different agents that respond differently to the self-talk of other agents can be

substituted into the system easily. The direct call structure is suppressed in favor of an implicit

call structure that is based on saying things to themselves and broadcasting it in a form that others

understand. Refactoring means substitute into the architecture agents with virtual machines that

react differently to the self-talk of other agents. VLMs that are called by other agents that are

outside the agents are services and do not react to self-talk of others. On the other hand we also

want to suppress the explicit ordering of calls of operators in the VLM, and we can do that via

guards. In other words we do not place in the code direct calls in a specific sequence for any

Tangled Hierarchies Kent Palmer

 10

VLM. Rather we augment each operand with guards and we allow the VLM calls to sequence

themselves. So for instance, an agent hears via the broadcast bus that another agent has prepared a

model, and say that model needs to be traversed in order to produce a result. The responding

agent has to call a method with a sequence of calls to respond to that self-talk of the model

building agent. But instead of calling those methods in a given order, rather it places guards on

those method calls so that merely by calling the first in the sequence the rest of the sequence fires

on its own determining its own order of calls. This means that if there is a change that requires the

VLM operators to be called in another order it will adapt itself to that change and it will flag what

variable is not fulfilled in case the change causes it not to be able to fire the sequence as causation

ripples through the system.

Now in general we will use Gurevich Abstract State Machine method to describe a given system

at a certain level of abstraction. Gurevich has proven that rules can be used in this way produce

Turing equivalent machines. In general we use macro rules to represent the causality in the

application. Given a set of inputs then certain VLM operators are called, which call others and so

on until an output is obtained. In general we work backwards from outputs to verify all the

necessary inputs to make the machine work and thus show completeness. Completeness means a

complete set of causal chains from beginning to end of the machine as defined by rules.

Consistency means that the inputs of the Machine is commensurate with the outputs, and vice

versa. Wellformedness means that the entire system is described by rules that represent the

causality within the application. Agency can be represented by concurrent ASMs. Or we can

think of agency as being contained in a machine. The assumption of Gurevich is that all

computations are instantaneous and that is how he puts concurrency out of play. He assumes that

all rules can be executed in any order in the GASM. These simplifying assumptions address

precisely the problems we were addressing with the two techniques we mentioned previously, i.e.

freedom from explicit ordering, and freedom from an explicit call structure. GASMs are rules but

they are implementing State Machines. A state machine is a combination of input state plus input

variables that entail a function call that produces outputs and an resulting state. Basically queue

plus a state machine is a turing machine. The queue would be the inputs that arrive in a given

order to drive the GASM. We use the Pattern Method of Pieter Wisse to determine the identity of

elements in different contexts. We do not assume that something is identical though all contexts

as is normally done, but rather we assume that as behavior changes in different contexts then

identity is transformed. Wisse gives us an alternative context driven way of determining the

identity of objects that are dealt with by the GASM, and make up its structure. But for

architecture the important thing is how agency is distributed in order to enhance Quality of

Service once we have a GASM that works (proof by existence). And it is in the introduction of

agency for performance reasons that we begin to apply the paradigm of self-talk and guarded

operands in order to make sure that the physical machine by which we implement the logical or

essential machine is free from pre-determined order as possible in order to make refactoring less

onerous. Extra structure is needed to produce agents that produce and consume self-talk, and also

extra structure is necessary to guard operands that prevent internal rules from firing, so that the

sequence of firing is not determined beforehand. This maintains the freedom of the partial

ordering of agent and function to the maximum degree possible even in execution. Once we know

the ordering of the firing we can reorder the code so the firing is in the normal sequence of firing.

But this does not prevent other sequences of firing that may occur given different input

sequences. Because agents are engaged in self talk overheard on party lines to produce implicit

causation, then causal lines are not manifest in the call structures and so it is much easier to plug

and play different agents together to produce systems that may evolve in a freer manner with

minimum refactoring.

Now of course what we want to add to this is the ability to generate code rather than writing

Tangled Hierarchies Kent Palmer

 11

every piece of code from scratch and so as we go along we will attempt to show how this

structure lends itself to code generation techniques using configuration files and standard models

in order to produce the programmatic structures with code templates that are filled in using

models and configuration files. Possible changes are isolated to configuration files as much as

possible so that we can change the behavior of the system by changing the configuration file

rather than either the code or the domain specific models. In our case the domain specific

languages are architectural design specific, but application specific domain languages can

augment these using the ISEM statement format. Each design domain specific language describes

a minimal method bridge between viewpoints on the real time system. These are the VLM, Use

Case, State Machine, Petri Net, Sequences, DARTS, Dataflow/Object languages in ISEM format,

as well as others. Mostly these minimal methods appear in UML and SysML. We recommend

TextUML for models when UML conformance is important. It is supported with TextUML

toolkit and AlphaSimple from Abstratt which gives examples of code generation from TextUML

models.

Here we are concerned with understanding the relation between the models represented by the

minimal methods and the viewpoints on Realtime software. Now that we know the viewpoints

and know how each is defined, for instance the functions and agents are defined by a hierarchy.

Events and Data are also defined by a hierarchy but further specified by Interval Logic and ERA

diagrams. In each case there is an anchor node for a given hierarchy and then the entities of the

type in a parent child relation that forms the hierarchy. But the Component Hierarchy that

represents the whole architecture of the system also has an anchor and then component entities.

But the difference is that in the component hierarchy there is a mixture of types that can be

dragged and dropped onto a higher hierarchy element to become a sub-element in the component

hierarchy. We can have a separate set of network components that produces a network topology

which can form the basis of the component hierarchy. So if we drag and drop the network

components into the hierarchy first that represents the hardware infrastructure. This can be seen

to work in the Business Analyst model in InteGreat. However, that model does not serve

Software Engineering as well as might be hoped. Instead we would expect a UML/SysML like

model for use in Software Engineering development modeling. The point is that just like in

InteGreat we can then drop on top of hardware network topology elements the various software

elements such as agent, function, data, event. Each combination of these has a separate meaning.

 Processing Node supports:

 embeds RTOS :: rtos1 runs:

 reacts Agent :: Task1 responds:

 triggers Event :: Event1 calls:

o invokes Function :: procedure1 transforms:

 offers Data :: Operand1 arrives:

Tangled Hierarchies Kent Palmer

 12

This is the nominal configuration in which there is a hardware processing node which has a Real

Time Operating System (RTOS) on which are agents as tasks which are assigned functions that

support dataflow triggered by events.

 Processing Node :: node1 supports:

 embeds RTOS :: rtos1 runs:

 reacts Agent :: Task1 receives:

 intercepts Port :: port1 queues:

o invokes Message :: message1 transmits:

 reacts Object :: object1 calls:

 reacts Method :: method1 responds:

o provides Result :: result1 gives:

 queues Message :: message2 transmits

Tangled Hierarchies Kent Palmer

 13

If we reverse data and function layers we get encapsulated data with method functions driven by

events of messages arriving in a queue.

 Processing Node :: node1 supports:

 embeds RTOS :: rtos1 runs:

 reacts Agent :: agent1 services:

 provides Data :: data1 calls:

o invokes Event :: event1 triggers:

 gives Function :: function1 calculates:

o provides Result :: result1 gives:

 queues RPC :: return2 transmits

Tangled Hierarchies Kent Palmer

 14

If we place data first then we get another configuration where data is a service request returned by

the agent. This is what the generic structure looks like

 components_semantic Network_Type1 :: hw1 supports_action:

 embeds_semantic Metasystem_Type1 :: os1 runs_action:

 reacts_semantic Agent_Type1 :: agent_component1 services_action:

 provides_semantic Data_Type1 :: data_component1 calls_action:

o invokes_semantic Event_Type1 :: event_component1 triggers_action:

 gives_semantic Function_Type1 :: function_component1

calculates_action:

o provides_semantic Result_Type1 :: named_item1 gives_action:

 queues_semantic Action_Type1 :: named_item2

transmit_action

Tangled Hierarchies Kent Palmer

 15

These are tangled hierarchies. It is the perspectival hierarchies that are tangled together to

produce specific architectural configurations of named components. Now InteGreat only gives the

lower relation and not the upper relation in each case. The concept is that all possible drops into

the component hierarchy have a specific relation, but in InteGreat you can change the name of the

relation from the canned one if not appropriate. The upper level action relation is not known until

the drop is made, and may be selected from a list of actions.

 [relation_semantic] Object_Type1 :: component_name1 [action]:

o [relation_semantics] Object_Type2 :: component_name2 [action]:

Relation semantics may be of different types between two objects, and actions may be of different

types between objects so these would be lists of possible relations and actions. However, there

can be a default that allows them to be set upon the drop into the component hierarchy. All the

various permutations of drops into the hierarchy must be analyzed in order to make sure that they

make sense, but a particular drop is meaningless then it should be prevented. But we do not

expect there to be any illegal drops, but this cannot be determined until the combinatorial analysis

is done. We must note that there is an implicit combinatoric of possible hierarchical relations

within the component hierarchy whereas this is explicit in the test hierarchy. We expect there to

be a duality that can be taken advantage of between the two hierarchies in terms of test generation

possibilities but until this is made explicit it is hard to say exactly how that would work.

At this point what we are wondering is if this scheme would be a way to prove consistent and

complete the design ISEM sub-languages. I have been looking for a scheme to show the

consistency of my the ISEM sub-languages since they were up graded based on what I learned

from doing my dissertation. The language now has about 1700 statements which is about a

thousand more than the first version published in Wild Software Meta-systems. It is amazing to

me that no genuine design language of this type has been created in all this time. I more or less

assumed that other would have the same idea and do it better than I had done it originally. But the

human readable languages that have been created still smack of programming languages or

formal languages and nothing clear and simple of this type has been created so far to my

knowledge. When I ran into InteGreat and it was explained to me how it worked I saw that it was

a semantic tool like no other I had seen, and it appeared to me that perhaps it might provide a way

to test the completeness and consistency of my language. Of course since it is a Design language

Tangled Hierarchies Kent Palmer

 16

and thus is not convex and closed it can only be shown to be para-complete and para-consistent.

In general the idea is to tie the language structures to the hierarchies and to make sure that the

permutations of the hierarchy relations is mapped out by the languages. The languages are more

expressive than the hierarchies and their entanglements, but the combinatorics of entanglement

gives some expression to the core relations that the language needs to provide which is

independent from the expressions of the languages. from a list of actions.

 [relation_semantic] Object_Type0 :: component_name1 [action]:

o [relation_semantics] Object_Type5 :: component_name2 [action]:

from a list of actions.

 [relation_semantic] Object_Type3 :: component_name1 [action]:

 Begin Component 1

o [relation_semantics] Object_Type4 :: component_name2 [action]:

from a list of actions.

o [relation_semantics] Object_Type5 :: component_name2 [action]:

from a list of actions.

 End Component 1

 Begin Component 2

o [relation_semantics] Object_Type6 :: component_name2 [action]:

from a list of actions.

o [relation_semantics] Object_Type7 :: component_name2 [action]:

from a list of actions.

 End Component 2

 [relation_semantic] Object_Type8 :: component_name1 [action]:

o [relation_semantics] Object_Type9 :: component_name2 [action]:

The entanglements can be packaged and given component names that combine different sub-

components into larger scale components. In this way entanglements can be hidden and only seen

as necessary. This packaging helps to make the components generic and reusable or copyable.

We note that the component hierarchy and each sub-hierarchy within it can be a bus to broadcast

self-talk upon. Also actual function calls with operands can have guards so that this structure

becomes one which could support the elements that would make refactoring less necessary.

Refactoring when it is necessary would be accomplished by dragging and dropping the elements

within the hierarchy. If code generation became possible from these models then this would also

be a way to refactor the code without having to touch it.

Tangled Hierarchies Kent Palmer

 17

Hacking the Essence of Software

It is clear that the core of software from a theoretical perspective is the Turing Machine.

And since this is the Turing centenary we should focus to some extent on this core and attempt to

understand it with respect to the problem we are attempting to solve which is how to represent the

design of software, and how to show that Design DSLs are para-consistent and para-complete and

para-clear. What has been suggested so far is that there are hierarchies of entities in the related to

requirements, agents, functions, events, data, and tests and that these become tangled in a

component hierarchy, and it is the relations and actions in this tangled hierarchy which is the

means of establishing the para-characteristics (clear, complete, consistent, verifiable, valid, and

coherent) related to the aspects (real, true, identical, present) of Being. We note that the

component hierarchy appears in the hole in the lattice of the methodological distinctions and

between the dual measures of linear order without distance and Partial Order with distance. These

two types of order stand as a way of talking about delocalization and decoherence as well as the

basis for the structure of the dualities of the minimal methods. So for instance linear order

without distance is a description of the Code we create when programming. Each statement in the

code is in a linear order, but the performance distance between each statement is unknown. We

have to make external measures of performance to determine that distance, and because there can

be context switching between statements it is not sure that a given statement will actually be

executed immediately after the next when considered from the point of view of actual timing, we

just know that if it executes at all it will be sometime later. The other type of order, partial order

with distance says that programming constructs that are being executed are not necessarily

ordered in a strictly linear way, and may if say they are being executed in different tasks, or by

different hardware infrastructures be such that they will actually execute in different orders

during different runs but the effects may be measureable on some background variable such as

time or memory or population (which are the sources of the hierarchies that represent the

viewpoints on realtime systems in Klir).

Both of these ordering types can have many different relations to each other and the result of that

is decoherence and delocalization that occurs in actual programmed, so called hacked, code. The

use of the term hacking highlights the very pragmatic nature of all our attempts to get things to

work in spite of decoherence and delocalization. Delocalization reminds us that references to

design elements may be spread out or smeared out in the code as a linear static organization.

Decoherence reminds us that just because something is near to something else in the code it does

not mean it will be executed in a way that we expect, discontinuities can occur between

statements when they are reduced to assembly code and executed, and the fact that there are

multiple hardware processing elements, or multiple tasks may mean that the order of actual

execution is not set, even though it can be measured so that we are dealing with probabilities and

not determinate results when we are talking about executing masses of binary executables. A lot

happens when code is compiled and what that compiled code does in actuality may be different

from what we expected it to do when we encoded it. In a sense the actual result of running code

must be used to decode what we encoded. So there is a continual interpretative process that

occurs as we write, execute and debug the code we are hacking. To say that code is decoherent

and delocalized is merely to say that it represents an example of what Merleau-Ponty called

Hyper Being, or what Derrida called DifferAnce, or what Heidegger called Being crossed out.

The pointers and accumulators in the hardware represent what Heidegger calls Present-At-Hand

(pointing) and Ready-To-Hand (grasping) in Being and Time and which are interpreted

psychologically in Phenomenology of Perception. Software is the only cultural artifact that has as

its essence Hyper Being or differAnce. DifferAnce means differing and deferring all the time,

which Paul Simon calls “slip-sliding away” and which Plato in the Timaeus called the Third Kind

of Being. Software is something written that executes and as it does so it can rewrite itself. And in

Tangled Hierarchies Kent Palmer

 18

fact it is precisely a machine that can rewrite its own tape, and ultimately its own program, that

we call a Turing machine. And there are two types of Turing machines, the normal ones and

Universal ones that run other Turing machines which we now call operating systems. But we

should really call them operating [meta-]systems, because they go beyond the system of the

turing machine and are actually models of its environment. The dual of differing and deferring of

software is effectiveness (agile) and efficiency (lean) which together give us efficacy. Software

can differ from itself as it institutes differences and its execution can be measured in terms of its

effectiveness and efficiency. And as humans that produce software as an allopoietic product, we

can be lean and agile in that production process which together make up what Reinertsen calls

Flow. What we are saying is that there is some mirroring between the software product and the

software development process that we need to take into account when we consider it as a

pragmatic human activity. These computing infrastructures we build are far from autonomic, and

so we have to build them piece by piece and then we have to maintain them for them to continue

to work, and they are very fragile, and that is why the testing needs to explore as much as it can

the combinatoric order of testing possibilities in order to assure robustness to the extent we can.

But combinatorics are so vast that we need special ingenuity to make sure that systems are well

tested, because it is many times impossible to test all paths beforehand. So that means we really

need to understand the nature of software in order to produce good software. Part of that is

understanding each of the minimal methods that can be generated out of the duality between the

two orders as they are projected as bridges between viewpoints on the realtime system.

So now in order to try to extend our understanding of the Turing machines and State machines

that are the core of Software, i.e. the place where Design meets Programming, which in its

pragmatic aspect can be called hacking which seeks ultra-efficacy in the development of working

software as seen in the Agile paradigm that emphasizes hyper-effectivity and the lean extension

that emphasizes hyper-efficiency. A key question in this regard comes up when we try to

understand the nature of Peirce’s Firsts (isolate, points), Seconds (relata, lines) and Thirds

(continua, surfaces) are in relation to the Turing machine and its state machine. A state machine

plus a list or queue or tape is a minimal Turing machine. When we look at a state machine we see

that it is normally a set of vectors composed of input, entry state, output, exit state. These can be

expressed as rules if input and current state then function producing output and new state.

Gurevich showed that we can use rules such as these to describe any system at any level of

abstraction and it would be Turing equivalent. Thus it is not necessary to reduce something to a

Turing machine to show it is computable. And Computability reduces to knowing the causality

running from outputs back to inputs through the system and knowing that all those threads of

functionality are complete and consistent and are well-formed. So that means we can abstract

from low level Turing machines and just use the Gurevich Abstract State Machine method as our

representation of the process of computing. Executing software ultimately reduces in its essence

to one syntactic construct which is the if…then… statement. Execution of software means to

execute rules. All software can be represented as a stepwise refinement of rulesets from any level

of abstraction down to the level at which the rule can be represented in a general purpose

programming language. And we can use the Pieter Wisse’s Metapattern method to understand

how to derive the objects that the rules are referring to at the various levels of abstraction.

Guervich ASM and Wisse Metapattern methods are duals of each other in this regard, one giving

the causal structure and the other the contextual basis for the identification of objects based on

their different behaviors in different situations, which amounts to the identification of

discontinuities in the identity and the behavioral response of objects.

Now what we notice is that actually no matter how many inputs we have, and no matter how

many outputs we have, there is a three way relation between the inputs, the outputs and the states,

and that the two mentions of the state, i.e. the self-reference of the state machine providing a

Tangled Hierarchies Kent Palmer

 19

pivot of identity still makes only a third element. And this is related to what Peirce calls the

structure of the sign. A semiotic relation is a Third, or continua that is an object, and interpretant

and the sign itself. In this case we have the object as seen in the input, and we have the

interpretation as seen in the output, and we have the sign in the state which is transitioning within

the state machine that produces an algorithm that converts from input to output based on state.

The transformation between input and output is performed by a function. Agency is represented

by the infrastructure that is performing that computation. For instance we might have the same

statement performed in different tasks or on different hardware platforms, and thus they can be

performed in parallel. It turns out that if you represent a simulation of a system with a refinement

of the Gurevich ASMs all the way down to the code what results is very inefficient, even though

it may be functionally effective. So, performance improvement comes from introducing

architecture which usually means distributing the functionality among various agents, i.e. into

tasks or among processors in a distributed system.

The state machine is in fact made up of a three way relation between inputs, outputs and states.

There is a triangular surface that connects these three elements and we call that a Third or a

continua. It is what Steven Wallis calls a robust theory
1
. One way to see a state machine is to

think of it as having anchors of functions between input and output, but that it changes the

functionality, based on its state and thus providing a different layering surface to the state

machine triangles. Data from input to output will flow a certain way until there is a state change,

in which case it will flow differently in dataflow systems. States change transformations from

inputs to outputs, but this can be seen as a three way semiotic relation with different

computational surfaces being actualized giving the state machine an identity as a single machine

as it executes on various input data transforming it into different output data based on the state of

the system. Now since this surface can be represented as a rule we will call the surface itself the

Rule. The arrow of functional transformation of inputs to outputs is complemented by an arrow

from input to state, and from state to output as the state machine determines its own state for the

next input session. The rule is a surface, and its boundaries are the functional transformation, the

if part (left hand side) queries the state to determine the function, and the then part (right hand

side) that sets its own state for the next round of inputs. We can then see that the data of input,

output and state are the discrete isolate of the First, and that the function, and the self-querying of

the If S and the response of the Then S’ are the seconds or the relata that bound the surface of the

rule R. Rules are surfaces or continua. I think this is a new way to look at them in terms of

Peircian principles that I have not seen in the literature yet. It also shows why states are signs, and

that state machines are semiotic machines. They take in objects (inputs) and they use signs

(states) to interpret them giving outputs via functions. If we understand that state machines are

semiotic machines then I think it clarifies why we call their production encoding and the

interpretation of their execution results decoding. And this way of looking at it probably came

directly from Turing’s working on codes during the Second World War. When we are coding we

are setting up a sign system and that involves taking in information and transforming it and

putting out our interpretations along with the product of the computations. The internal state of

the state machine is what gives it an identity. It is the identity that is preserved by the various

rules that make up the machine as its sensing-action vectors. It is sensing what is present, i.e. the

inputs it is given. When we combine the aspect of presence and identity with truth we get a

formal system. A formal system has the properties of completeness, consistency, and clarity

(wellformedness). The rule set of the state machine (its vectors as a set) need to be consistent and

complete for the state machine to function properly. Wellformedness comes from the fact that all

the vectors are expressed in rules. The lowest level of Truth with respect to Pure Being is

1 From Reductive to Robust: Seeking the Core of Complex Adaptive Systems Theory Steven E. Wallis 2008 DOI:

10.4018/978-1-59904-717-1.ch001 http://www.igi-global.com/chapter/intelligent-complex-adaptive-systems/24182

Tangled Hierarchies Kent Palmer

 20

verifiability. That means that we can compare the reality of the results of execution to the

statements themselves and show that the statements do in fact express what the machine does. So

the truth of the state machine has to do with the gist of the statements and their mutual

interoperability and the wholeness of their organization indicating a singular unified totality, i.e. a

synthesis, which is complete (Truth related to Presence) and consistent (Truth related to Identity)

and clarity (Presence related to Identity).

Now we know in the Turing Machine that the state machine is related to a tape, and that the tape

is a series of places with symbols in them. The Turing machine takes in the symbols and produces

other symbols. There is a pointer that indicates what place with a symbol that we are talking

about at any given time. This is called the tape pointer. Tapes are finite on one end and infinite on

the other end in the original conception of the Turing machine so that it can handle infinite

computation. The tape is an extent and this is the representation of space. The pointed to symbol

is a gestalt on the background of all the other symbols on the tape. Now the input and output for

the state machine comes from the tape. So the symbol on the tape is a fourth entity producing a

minimal system with the input, output and state. So what we need to explore is what this fourth

entity gives us beyond the state machine. Since the other entities make up the formal system of

the state machine, then we would expect the symbols on the tape to stand in for reality. Reality is

related to the other aspects of Being by giving us verifiability, validity, and coherence

characteristics. The state machine can read and write symbols to and from the tape. So there is a

directional line from the tape to the inputs and from the outputs to the tape related to read and

write operations. This creates another triangle which is composed of read, function, write

operations. The focus of the read and write is where the tape pointer is pointing at any given time,

and this is the point in the extent where timing occurs. In other words the pointed to cell becomes

a spacetime nexus within the worldline of some agent. The surface that is defined by the triangle

of input, output and symbol in place on tape (gestalt) with the read, function write directional

relata (arrows) is an interactive flow.

Once we have defined another surface which relates the state machine to its tape which also

relates the formal system to reality and thus generates significance. We can verify the statements

of the state machine against the tape by watching what is written to the tape. And we can validate

the state machine by looking at the results of the execution of the state machine through the

results on the tape. By relating the state machine to the tape we also get coherence because the

state machine state is an identity and that identity gets reflected back onto the tape though the

outputs of the state machine operation which can be seen as coherent if it does what was intended

and so we start to see agency in the coherence of the operation of the state machine as reflected

on the tape. There are two other surfaces that related to this effect. The first is the surface related

to reading input. Associated with this input is the state we see in the left had part of the rule and

that is completed by an interpretation of the symbol on the tape that is the figure of the gestalt.

This surface is hermeneutical. On the other hand there is a surface related to writing output which

is associated with the right hand side of the rule and signifies intent. So interpretation takes the

symbol as a sign of some significance and the intent gives a sign of some significance. Both of

these semiotic characteristics are signs of agency, which is the dual of functionality. But the

interesting thing is that there is a duality between ‘interpret’ and ‘intent’, while functionality is

unified. The surface related to writing outputs and intent is causal. Now we have four surfaces

rule, interactive flow, hermeneutics and causal intent (or affect) that are all what Peirce would

call a third or a continua. Interactive Flows relates the state machine to the tape and thus relates it

to spacetime creating a worldline of an agent through the controlled and organized operation of

the functionality of the state machine as it relates to the contents of the tape which can contain

either encoded data or algorithms. The organization of the state machine is seen in the relations of

its rules to each other that reasserts its identity. So the State is related to identity and the Tape is

Tangled Hierarchies Kent Palmer

 21

related to Reality. Presence is related to inputs and truth is related to outputs. Inputs are what is

present in input variables. Outputs are what show the organization of the system via the state

machine that is true, where true means going in a straight line based on criteria that are used to

determine that it is straight. So for instance any linear system is true. i.e. it is producing straight

line output. All non-linear output is judged on the basis of the true coordinates, i.e. orthogonal

straight lines.

This association of the isolate with the aspects of Being (tape=reality, state=identity,

input=presence, output=truth) comes from the fact that the various surfaces (interaction, rule,

hermeneutic, causal intent) intersect by threes.

Surfaces: Interaction, rule, hermeneutic = input isolata -> Presence aspect

Surfaces: Interaction, rule, causal intent = output isolata -> Truth aspect

Surfaces: Interaction, causal intent, hermeneutic = symbol on tape isolate -> Real aspect

Surfaces: Hermeneutic, causal intent, rule = state isolata -> Identity aspect

Similar things can be done by looking at relata:

Read, If clause, function = Input

Write, Then clause, function = Output

If clause, Then clause, semiotic = State

Read, Write, semiotic = Tape symbol

Tangled Hierarchies Kent Palmer

 22

This is a minimal system as defined by B. Fuller. All the elements are informed by all the others

diacritically. It is a tetrahedron of concepts composed of four isolates (symbol, state, input,

output), six relata (function, read, write, if clause, then clause, semiotic), and continua (rule,

hermeneutic, causal intent, interactive flow). Now what is surprising about this extension of the

concept of the Turing Machine is that it is semiotic and thus connects directly with Peirce’s idea

of semiotics as a threefold relation. In it Rules as a surface mediates between the hermeneutic

surface and the causal surface. Both of these surfaces are based on and define the surface of

interactive flow, which is the basis for positing the gestalt of the symbol on the ground of the

whole tape. It also produces a double bridged line of agency existing in a tension between

interpreting (taking for a sign) and causal intent (giving a sign). This double action of the agency

is the dual of the orthogonal line of function, which is also a method for objects. It is interesting

that the agent line is composed of two oneway bridges while the function is a single oneway

bridge. There are various compositions of directional arrows bounding each surface. All the

isolata are variables of different kinds. All of the lines are directional. Two of the surfaces form

circuits around their parameters. The oneway arrows of the function and the clauses of the rules

forms a circuit with the tape. It is the dynamism of the tape that allows the machine to work. The

state machine itself is reactive. The dual of the state machine is the petri net which is proactive.

But also there are multiple petri net representations for a given state machine kernel. Petrinets are

more proactive but also more superficial. State machines are condensed representations that are

most efficient and effective. You can get this kind of proactive structure from two state machines

that are interlocked each feeding the other. Colored Petrinets are better at exhibiting control

structures that are self-starting. The colored Petrinets operate more like cellular automata using

markers in places to activate transitions. Petri Nets look at function from the point of view of

event, while State Machines look at events from the point of view of function. The event is a

triggering of the transition when the marker is in the place and the function occurs in the

transition. The colors of the markers are the inputs, and the colors of markers are the outputs too.

State machines on the other hand transform what functions are called given monadic state identity

Tangled Hierarchies Kent Palmer

 23

operations whose differences can be used as a controller. In state machines function is central and

in petri nets it is event that is central created by the marker being in a place, like the symbol is in

the place on the tape. When we put together the petri net and state machine then we have the tape

as active, and the symbols being triggering mechanisms to change the colors of the symbols. So

the two dual mechanisms can both work together without interfering. The petri net merely colors

the symbol. This is an autopoietic symbiotic relation between the two archetypes of computation.

Once we have realized that the two archetypes of computing can coexist together manipulating

and using the same tape in an autopoietic symbiotic relationship where one manipulates the

symbol and the other manipulates the color of the symbol, one treats the symbol as an existent

maker with color which causes transitions to fire, a firing transition is just a function that takes

colored makers as input does a transformation with side effects and then places makers in their

output places. On the other hand the State Machine treats the symbol as a character and reacts to

its characteristics as a symbol which informs how the function will treat it as an input symbol

which is read from the tape and then an output symbol is written back to the tape, perhaps after

moving the data pointer backwards or forwards. The state machine has a direct relation to the

place on the tape that is pointed to and it reads and writes symbols based on where the data

pointer is pointing. The petri net on the other hand has an indirect relation to the tape where

certain cells are treated as places into which existent markers are placed and these places form a

network that is activated by the existence of a symbol in a place of a given color. So there is a

superimposition of color on symbol such that the two computations can be separate yet indirectly

interact. What would happen if you had such a computational setup is unknown as each assumes

the stability of the tape but the petri net would be shuffling the symbols and tuning them different

colors behind the scenes from the point of view of the state machine, and from the point of view

Tangled Hierarchies Kent Palmer

 24

of the petri net markers would be coming into and going out of existence suddenly. From the

point of view of the state machine symbols would be appearing and disappearing. What is

interesting about this is that Petri Nets are active and State Machines are passive and so they have

completely different characters, and the Petri Net could act as the controller for the State Machine

jump starting and boot strapping action by the State Machine. Also the Petri Net is better in

modeling protocols than the state machine. So it could be that the petri net could act as the

protocol between two state machines within the universal Turing machines that run separate

Turing machines. This thought of the Universal Turing machine (meta-machines) takes us into

the modeling of the meta-system by the addition of a capsule to the state machine minimal system

to form its dual.

We will think of the capsule as the encapsulated data of an object, but we can also think of it as a

functional programming monad. We do a get operation in order to take the contents from the

capsule and we do a put operation in order to place new contents in the capsule. This is a side

effect that is placed in the capsule or monad. The surface from surrounded by put, get and

function should be thought of as the side-effect surface which is different from the rule surface or

the interaction surface. Once we realize that there is another surface related to capsule side-effects

then we must ask what the other two surfaces represent.

Tangled Hierarchies Kent Palmer

 25

Interestingly the other two surfaces impinge on a line between State and Capsule similar

to the line between State and Tape. This line is a two way bridge, so that there is one surface that

is Get, If, and Inform, and another surface which is Then Put, and Affect. Let us call the Get, If,

Inform surface Intentionality for the time being. Let us call the Then, Put, Affect surface

Causality tentatively. We note that since the capsule can either be inside the object or outside the

system as a monad it can be interpreted as either inward or outward, so we can think of the two

way bridge of inform and affect as either Subjective or Objective depending on whether the

capsule is inside or outside the system. So it is hard to interpret exactly what is the next higher

thing from agency that is being revealed here but let us call it Dasein following Heidegger who

was following Hegel. Dasein is the projective capability posited by Kant. Dasein informs and

then affects, just like agency interprets and then intends. The informing cycle is related to the

intentionality surface and the affective cycle is related to the causality surface. Intentionality and

Causality stand over and against the side-effect surface.

Tangled Hierarchies Kent Palmer

 26

These three new surfaces are meta-systemic, whether that meta-system is seen as within or

outside the state machine system region. Systems nest and Meta-systems nest. But they also

interleave in their nesting like Russian dolls where the dolls are the super-system, system,

subsystem and the interspaces between the dolls are the meta-systems. Meta-systems are

operating systems for applications and they are modeled as Universal Turing machines. A given

meta-system can run multiple applications. Those applications are all state machines, that

communicate with each other via protocols represented by the petri nets. The System as a bubble

between higher and lower Meta-systems can see the meta-system as within or on the outside, and

thus the capsule can be on either side, either within or on the outside. If it is on the outside then it

is a monad. If it is on the inside then it is an object. So, monads and objects are duals.

For historic purposes here is the original diagram in which these relations were first explored.

Tangled Hierarchies Kent Palmer

 27

The point of these musings is that I have long wondered how to apply Peirce’s insights regarding

continua or thirds to fundamental structures, and there is no more fundamental structure than the

Turing Machine for Computer Science and Software Engineering. Gurevich generalized it so that

we can take arbitrary levels of abstraction and see whether they are computationally and thus

causally complete by expressing them as Rules. Here we see why this works which is because the

rule is the surface circumscribed by If, Then and Function. Notice that the If and Then arrows on

this surface are both go the same way as the function edge. This is an asymmetry within the

structure. The other three surfaces are bounded by circuits of arrows, and the line that is opposite

the function that stands for agency is a double bridge in order to allow these circuits to exist

within the structure of the tetrahedron. I was thinking about Steven Wallis’ idea of robustness

which counts Newton’s law and Ohm’s law as robust theories, and I realized that state appears

twice and that really the relation between input, output and state as a robust relation if we thought

about state in terms of identity. And then I realized that all we needed was the Tape to have a

Turing machine and that meant there was a minimal system. Between the tape and the input and

output variables the interactive flows were defined between the state machine and the tape. The

next step was to figure out the nature of the other two surfaces. Hermeneutical and Causal is what

came to mind. One surface is involved in interpreting the tape, and the other surface is involved

in reacting based on that interpretation. But it was surprising that agency was reflected in a dual

bridge of interpret and causal intent (or affect). It is even more surprising that if we extend this to

the meta-system beyond the Turing machine (the meta-machine) then we get something like

Dasein and there are surfaces for intentionality and causality, which are opposite the side-effect

Tangled Hierarchies Kent Palmer

 28

surface. And this interpretation is forced on us by the fact that the capsule can either be seen as

inside or outside the system, because meta-systems can be nested within or as environments

outside the system. The interesting thing is how when we flesh out this robust structure we see

higher concepts come into play like agency and Dasein where we do not expect them. We also

see how double bridges arise as a result of asymmetries in the way that arrows are configured

along the edges of the tetrahedral diamond. It is only the octahedron that has perfect flow along

its arrowed edges, so there has to be asymmetries in the tetrahedral system.

The tetrahedrons we have uncovered are the three dimensional and thus related to a philosophical

principle beyond those that Peirce adhered to which are fourths which signify synergy and fifths

which signify integrity developed by B. Fuller in Synergetics. Synergy is the reuse of parts within

a whole. We see that in the reuses of state to emphasize identity across the changes of state.

Integrity is tensegrity which is flexible and inflexibility mixed to give resilience. We see then that

the Turing machine and the Universal Turing meta-machine tetrahedral have synergy by the reuse

of the rule surface, we also get reuse of the state variable within the rule and reuse of the agent

and Dasein asymmetric paths by their doubling. The capsule gets reused because it can appear as

an object inside or a monad outside the system. So there are many aspects of reuse showing

synergy in the diamond of the Turing machine with capsule configuration that unites system with

meta-system. Integrity specifically appears as the combination of replicated and non-replicated

elements in the Turing meta-machine representation. Via repetition some give or dynamism is

allowed in the structure that can allow it to be dynamic and thus give software the adaptability or

resilience we find in its essence. This diamond is a picture of the essence of software and is

founded on the ability of software to rewrite itself and thus on the differAnce of Derrida. By

using Peirce to understand the essence of software anew we are in effect hacking the essence of

software itself by changing our concept of it and reaching more deeply into what it means by

using the principles of Peirce and Fuller to understand this unique cultural artifact that embodies

Hyper Being and that is changing our world profoundly by its incorporation into all manner of

devices that are in turn change the available affordances and thus transform our world.

Frederick P. Brooks, Jr. in his famous article on the Essence and Accidents in Software

Engineering called “No Silver Bullet” identifies what he believes is the fundamental and essential

characteristics of software which are Complexity, Conformity, Changeability, and Invisibility.

Our new view of the diamond of the System and Meta-system interface between the tetrahedral of

the Turing machine and the capsule that share the rule surface does not change any of these

characteristics. But what it does is explain the structure of the building blocks that when put

together in ingenious ways result in complexity, and have the ability to conform, and control

changeability, and inform the invisibility of the conceptual and theoretical structure of software as

well as the praxis producing source code that embodies that structure effectively and efficiently.

Software only seems werewolf like because it appears alien to our conceptual apparatus. But Kant

placed rules at the center of reason in his first and second Critiques. But he maintained in the

third critique that there are no rules for formulating rules. And when we can put this together with

the idea of Wilden that The Rules are No Game. Then we see at least three levels, that of the

game, i.e. the rule governed activities, the rules themselves and that which produces the rules

which escape representation by them. The essence of software points to the non-representability

of software design a subject that I cover in my dissertation on Emergent Design
2
. The

characteristics of software come from the relation of the theory of design to the delocalization and

decoherence of the code as we attempt to play the game by the rules we make up as we attempt to

continue to indicate the non-representables. The point made in Scrum is that we can always

change the rules and thus get an emergent event that transforms the nature of the work we are

2 http://about.me/emergentdesign

Tangled Hierarchies Kent Palmer

 29

doing and the means of achieving our goal. This is the pragmatic aspect of our play of the game

in practice where we seek hyper efficiencies and effectivities and thus ultra-efficacy.

Understanding the essence of software synthetically rather than analytically via the philosophical

principles of Peirce and Fuller give us a better appreciation of how the various characteristics of

the software essence interact to produce its intrinsic difficulty for which there is no Silver Bullet.

Now we can think not just about variables within our source code and how they are

algorithmically connected to each other, but we can think in terms of lines of flow, surfaces that

are bounded by these flows, and the solids that bring together these surfaces into System and

Meta-system spanning models. Thinking about the essence of software in this more elevated way

should help us deal with the problems of decoherence and delocalization that make the essential

characteristics of software intractable.

Now I am not sure that the characterization and naming of these surfaces are quite right as yet,

but it is a breakthrough to be able to describe them as surfaces and thus think of them as continua,

and of course because they form a tetrahedron of concepts we also have what B. Fuller calls

Synergy that comes in the their dimensional platonic solids as he shows in his masterwork on

Synergetics. To realize that the State Machine is a minimal system in B. Fuller’s sense is

important. But we can also see why the meta-system is less than the system because all it needs is

three sides to form the tetrahedral diamond formation. It builds directly off of the Rule surface.

So meta-systems and systems, Universal and normal Turing Machines, meta-machines and

machines both share the rule surface and thus can be described by the Gurevich ASM method

equally. The Meta-system has the capsule, i.e. the elliptic realm within it, that can be seen as the

niche for another system. As we have seen in other papers there are three types of system, elliptic,

hyperbolic and openly-closed. The hyperbolic is the complement of the elliptic. This hyperbolic

entropy is what threatens the bounded system. What balances them is the openly-closed system

with an oracle by which the autopoietic system knows what is happening outside without its

surface being breached, by some higher dimensional sleight of hand. We see that the meta-system

projects the capsule. But in doing that it sets up something higher than agency which we are

calling dasein that balances inform and affect. Dasein is opposite the function arrow, the

fundamental asymmetry that in this case forms a cycle with get and put. The ante is upped with

intentionality and causality surfaces superseding hermeneutic and causal surfaces. It makes sense

that dasein would show up here because we have seen previously that the hardware’s

accumulators and pointers (of which we see two each) represent grasping and pointing as

Merleau-Ponty says that represent Heidegger’s ready-to-hand and present-at-hand. Dasein has

this strange Metaleptic characteristic of projecting its own world which it finds itself within

which Kant posits. That projection boils down to intentionality and causality, but they only

appear as opposites to the unintended side effects that is the surface that connects the function to

the capsule. Indirection is the nature of the meta-system always. But those side effects only show

up because projection is opening up the meta-system within which the system is posited as the

ground for the capsule. Projection is parabolic, which is the balance between the elliptic and the

hyperbolic. The spreading of side-effects is hyperbolic. The capsule is a place to put the genie as

if in a bottle. But because the genie has been put in the bottle it can escape. The escaping of the

genie from the bottle is like the proliferation of problems from Pandora’s Box. Parabolic

projection is the balance between complete out of control escape and imprisonment forever.

Dasein splits the orthogonal projection into intentionality and causality. When it finds something

in the bottle then that is when it expresses intentionality, and when it puts something into the

bottle that is when it expects there to be a cause downstream as someone opens the bottle again.

Intentionality is subjective and Causality is objective, the doubling of this bridge is the split

between inside and outside. Projection itself is neutral between inside and outside.

One thing that I have been advocating for a long time is the idea that the difference between the

Tangled Hierarchies Kent Palmer

 30

system and the meta-system is the difference between conjuncting the Godel statement with the

system or not. If you conjunct it you get a whole greater than the sum of the parts and if you do

not then you get a whole less that the sum of the parts. Now let us look at the capsule if it is

within the system then there is a extra something hidden in the system that produces a different

result via side effects than the system would on its own as just a state machine. If on the other

hand the capsule is outside in the meta-system then there is no such emergent effect. The capsule

is the place from which the oracle of the openly-closed system can give us information from

within that does not come across the boundary of the system as Turing machine, and that is just

what objects do they are encapsulated, but they can be messed with by round about means via

other mechanisms besides get and put methods. And so it is possible to have not just storage of

information that comes though the get and put methods but via other means that reach in behind

the scenes to change the data stored in the object, that would be a representation of the fourth

dimension as a special access route into the bubble of the capsule. Now basically the capsule is

the same whether it is inside or outside the system as Turing machine. If it is inside it is

embedded in the inner operating system within the system that allows subsystems to interact. If it

is outside then it becomes a resource that the systems depend on for their sustenance, the

boundary of the capsule is what allows the meta-system to remain separate from the system and

thus to be independent from all systems that share the same meta-system. But because the capsule

is the same whether it is inside or outside it is via the capsule that the information surreptitiously

entering the system passes through. The capsule is the secret passageway between the inside and

the outside of the Turing Machine System, it is because of this secrete passage way that openly

closed systems can be modeled, and emergence can be simulated. Openly-closed systems

described by Victor Frankl in somewhat different terms are the median between Closed systems

and open systems. Both closed and open systems are immersed in a hyperbolic space which has

the nature of entropy. Closed systems do not take into account context and are the darlings of

physical science which treats everything as a closed system and thus a mechanism in order to try

to understand it. But as Rosen shows in Life Itself entailment has a rich structure that will allow

Biology to be understood within science via entailment structures that are circular. We can think

of these as hypercycles which allow biological systems to maintain homeostasis. Open systems

live in streams of energy that are far from equilibrium and can induce negative entropy or order

and organization. They draw on the capsules as resources, as sources for what is needed like CPU

cycles or memory or information radiators. We read information from the surface of the capsules.

Information we would not know otherwise. So for instance in programming there is the model of

the blackboard system which agents use as an information radiator. In the C2 system of Taylor

there is the broadcast of self-talk along busses to which agents can subscribe. Open systems

absorb this energy flow and other resources as well as information from external sources and via

its internal negative entropy it uses these resources to build its own complexity using hypercycles

as a means of self-organizing, and thus giving us an autopoietic system.

Autopoietic systems are symbiotic in as much as they are combinations of two dissipative

ordering structures that are negentropic. So we can image two Turing Machine systems that have

within each other the capsules of the other dissipative structure. Interlocking capsules allow the

dissipative structure to become stable. Each one reaches into the other to give it information that

it would not have otherwise from within about the other. Each one is in the meta-system or meta-

machine of the other. They are entangled with each other forming a solitonic breather or a

Kleinain bottle configuration and acting like Cooper pairs in superconductivity. A reflexive

system is the combination of two autopoietic systems, or four dissipative structures. The

dissipative structures that are negentropic are like what Deleuze and Guattari call Desiring

machines, but we can see these as really Desiring/Avoiding, or Disseminating/Absorbing

machines, and following Foucault see them as Practices rather than machines. But the metaphor

of machine is apt when we are talking about State Machines of Turing. In this case we have two

Tangled Hierarchies Kent Palmer

 31

tapes and two states, but we can have one capsule consulted inwardly by both as an oracle.

Outwardly the tapes can use the petri net protocol for coordination. But inwardly both are getting

information from nowhere about the other, and thus are able to act in Sync allowing ultra-efficacy

and laminar flow in their behavior, what Bergson would call pure motion. Outwardly there is the

reflexive social special system that embraces the symbiotic autopoietic special systems that are

made up of conjuncted dissipative special systems. These four dissipative special systems have

six possible relations, only two of which are embodied by the autopoietic systems which leave

four as virtual. It is this virtual minimal system that allows the projection of the reflexive social

special system as an emergent over and above the autopoietic relations between concrete

dissipative structures.

Many of the interesting ideas of Deleuze come from Bergson. One of those is Intuition by which

one realizes the nature of Duration. In intuition Bergson is exploring the same territory that Peirce

is exploring with the idea of Precission. And this bring us back to our key point which is that we

need to understand how continua exist and beyond that synergies that we see in the two tetrahedra

that are fused into the tetrahedral diamond. [Beyond that of course is the vajra which places an

octahedron between the two tetrahedra.] We have explored the petri net and state machine

because they are what exist from a methodological perspective in the place where the

entanglement of the hierarchies as components occur. They are dual bridges that are opposite the

DARTS of Gomma which allows us to describe how agents interact as separate tasks, through

messages through queues and using semaphores. DARTS is a single bridge that is the dual of the

‘dual bridges’ of Petri net and State machines. The tangling of perspectival components occurs

exactly in this space of embodiment. So what is entangling in terms of the hierarchical relation of

perspectival elements is represented as a state machine and tape, or petri net with colors (like

Conway’s Game of Life or Wolfram’s New Kind of Science simulations that also can be Turing

complete). So this excursion into attempt to understand the continua and synergies of the state

machine and Turing machine and universal Turing meta-machines relates to the embodiment of

designs with respect to the tangles. But also we need to go beyond this to understand how the

tangles become rational knots via this embodiment.

The minimal methods arise from the duality between Linear without distance and Partial with

distance which is the only separation point in the lattice of orders Klir calls Methodological

Distinctions. Between each pair of viewpoints are either oneway or two way minimal method

bridges. State Machine and Petri net is just one of these between function and event. DARTS

crosses the same area between Data and Agent. But note Partial Order separates into Agent and

Function perspectives as Full order separates into Event and Data perspectives. And then after

this separation then the minimal methods are generated by the interaction of the perspectives.

And so the crossing of the space in the lattice where the component hierarchy of tangles exists

occurs after this splitting of the perspectives from the types of order on either side of the split in

the types of order into Linear without Distance and Partial with distance. And as we have noted it

is these types of order that stand in also for decoherence and delocalization effects in the source

code which we are trying to avoid in the design, so the very pairing of orders that represent

Decoherence and Delocalization also are the archetype for the differentiation of the dualities of

the minimal methods that attempt to abstract above the level where Decoherence and

Delocalization occurs. All the bridges between viewpoints taken together give us slices of the

Turing machine. So Sequence Diagrams (Worldline and Scenaio) between Event and Agent, Use

Cases and Virtual Layered Machines between Function and Agent, Dataflow and Object between

data and function, and the spacetime intervals between Event and Data all exist as a frame around

the central crossing duals of Petri Net / State Machine and Darts. Minimal Methods are precisely

the minimal representations that can be repeated which are practical outlines of essential features

above the threshold of Decoherence and Delocalization. They are engineering discoveries mostly

Tangled Hierarchies Kent Palmer

 32

codified in UML and now also SysML. But these graphical representations only allow entities

and their relations to be represented. ISEM on the other hand allow complex relations within

single commonly structured language that are textual. As Frege said the unit of meaning is the

sentence. If you want to have complex structures with meaning you need complex multi-relation

representing statements. Wittgenstein in Tractatus on the other hand gives us the model of the

world with Facts, each sentence representing a fact about the design. And of course we have

Schemas Theory that says that all designs will be based on one or more schemas which has now

been put into the ISEM language. ISEM gives a common regular syntax for complex design fact

statements which allow the embodiment of Turing machine slices describing spacetime intervals

between interval temporal logic and Entity Relation Attribute Diagrams that represent Space and

Time. Then the other various Turing Machine slices build off of the way that the partial orders of

Agent and Data relate to those relativistic spacetime intervals. But there is a split in the kinds of

order that generate the archetypal duality that informs the production of the minimal method

duals or self-duals. And exactly at that split is where the Decoherence and Delocalization in the

Source Code exists, and where the tangled semantic hierarchy of components exists.

Understanding this complex structure is at the heart of all design activities. UML and now SysML

gloss over this conundrum by merely positing the various minimal methods but without

explaining their relations and origin. At least if we can recognize that the minimal methods are

slices of Turing Machines then it is possible to understand why they together can describe a

computational structure above the level where Decoherence and Delocalizaton take hold, i.e. at

the design level. Decoherence and Delocalization are like Quantum Mechanical effects, i.e. like

entanglement and superposition, which we assume will become computing concepts when

Quantum computers become a reality. But at the level of computing with Von Neumann

machines in General Purpose Languages (GPL) these are the effects we find that embody the

Differing and Deferring of what Derrida calls differAnce which is embodied in Software as a

cultural artifact. Decoherence is like Linear Order without Distance, which is the effect that the

actual distance between two lines of code in terms of execution is unknown. Delocalization is like

Partial order with Distance in which we do not know when a given element will take precedence

in the executional sequence given a lack of constraint but that the whole execution can be

measured to produce a performance probability. Decoherence means that due to the Differing and

Deferring we cannot be guaranteed at execution time that design elements will operate coherently

as they were designed within the static design structure. Delocalization means that in spite of

Encapsulation of Objects and Aspect oriented gathering of cross-cutting concerns we cannot be

sure that Objects and Aspects are not smeared out both in the code and at execution time.

Part of the problem here is the duality between Set and Mass. We design at in Sets but we execute

in Mass. Each has their own logic. Set logic is syllogistic which is the main logic of our tradition.

But masses have pervasion logic (like Venn Diagrams, or a boundary logic) and so it is that

separate logic that needs to be applied once we have compiled the source code into executables.

By pervasion logic objects and aspects may pervade certain regions of the executables and this

pervasion is their delocalization. Due to execution constraints any given line of code is broken up

into assembly code or p-code within the virtual machine and many factors can intervene between

the execution of one instruction and the next at the assembly level given task switching and

context switching and other execution specific effects that are not foreseen by the programmer or

software engineer when they are writing the code thinking about the design. These other factors

only get recognized when the debugging is occurring due to an error in the compile or a glitch

execution of the source code. These are not superposition or entanglement which are even more

extreme phenomena related to super-rationality on the one hand and paradoxicality on the other,

i.e. the limits of the divided line. Decoherence and Delocalization are breakdowns of schemas

with decoherence being a breakdown in time and delocalization being a breakdown in space. At a

given level of schematization we cannot trace to the lower level schemas without encountering

Tangled Hierarchies Kent Palmer

 33

unanticipated breaks in the execution continuities or dislocations and discontinuities between

lower level schematic levels, for instance when we go from Source Code text to assembly

language operators and operands within an executable. From the higher schematic of source code

syntactic patterning we see only a monadic mass in which differentiations we wish to make and

can understand at the design level are lost. Of course, with sophisticated debuggers and other

tools we can bridge this gap but it is extremely difficult and a single bug may take a long time to

resolve. When we try to debug quantum computers that operating at the limit of our reasoning

and understanding this will probably be even more difficult.

So the hierarchies of components are tangled but not entangled, and states are isolated and

determinate not superpositioned within those tangles. But recognizing that the limits of the

tangles that would appear at the quantum computing level helps us get our bearings in as much as

we are dealing with a Gordian Knot which is within our reasoning and understanding territory not

at its limits. However, that Gordian Knot can be inherently complex not just complicated

depending on the cycling of causal circuits within it. The knot is a flow of gestalts rather than a

single thread. And for this reason the relations between the duals of gestalt and flow, or proto-

gestalt and proto-flow apply phenomenologically to our ability to comprehend the tangling.

However, as we have proposed we believe that these tangles at the next level up in synthesis

become knots, and thus take on the continuity and discontinuity of self-organizing knot

structures. Thus the next emergent level these tangles do not just become tangles of tangles but

instead become knots. Those knots are circles of interlocking causality in the execution flow that

exhibits various isomorphies of cycles, and feedback/feedforward, and other specific isomorphies

that appear in the work of Len Troncale who has cataloged examples of Systems of Systems

Processes discovered by various systems sciences. It is these interactions of isomophies that Len

Troncale calls Linkage Propositions that combine to create specific Systems signatures and can

lead to combinations that do not appear in nature but which we can Artificially simulate in our

systems simulations. I have at the 2012 conference given a briefing on my extension to the work

of Len Troncale by producing a draft identification of the schematic levels at which various

isomorphies come into plan and also by providing linkage propositions that relate to systems

other than the system and especially to the meta-system. I have developed the hypothesis that the

Systems Processes appear within the field of the Meta-system which is of course the de-emergent

system. But many of the isomorphies and their associated linkage propositions operate in

Software systems as well. I have marked the ‘Discussants List’ of the Isomorphies and see that

either Isomorphies are directly related to software or simulatable. This means that these systems

processes can be combined and new linkage propositions can be discovered in an Artificial

Systems (Schemas) Simulation programme. It would be exciting to discover new types of

Schematic structures that do not occur in nature but are possible though some sort of genetic

algorithm based on isomorphies that generate linkage proposition sets that define new schematic

cohesion possibilities. And of course we know that software systems demonstrate many different

pathologies when various linkages between isomorphism break or become dysfunctional.

Generalization

We can generalize what has been said above by aligning it with General Schemas Theory and the

principles of Peirce and Fuller.

Tangled Hierarchies Kent Palmer

 34

What we see here is that there is always a live aspect of the minimal system and if we align that

with the facet which is zeroth principle then we can see the isolata as monadic points which has

relata between them that form a line. The form appears between the intype and the outtype. On

the other hand the Essence is the mediation between Type, Constraint and Isolata Monad. The

shape is the mediation between the two isolata monads and the pre and post conditions related to

the constraints. The two Isolata Monads that are repeated in relation to the Type and Constraint

forms the System which has synergy. Network is projected from the shape as the meta-system

with Integrity. On the other hand it is the form that projects the Live Facet. The representation of

the Form comes from the pattern of repetition of the Isolata in relation to the type and constraint.

Tangled Hierarchies Kent Palmer

 35

Here is a Variable and its relation to an Expression in the same format.

Tangled Hierarchies Kent Palmer

 36

This is the state machine and petri net in the same format.

Tangled Hierarchies Kent Palmer

 37

This is the relation of a Function and a Capsule in the same format.

This is the idealization as a field that describes the core of software in terms of the principles of

Peirce and Fuller.

Tangled Hierarchies Kent Palmer

 38

This is how the various idealizations could be formatted in similar template.

Schemata Language

We propose a new schemata language which would allow these relations to be developed with the

following template:

Type Schema1 Type relational-Schema2 Type Schema3 if constraint then action gives side-effect

to Type Schema4

So for instance:

Facet1 Monad Facet2 if constraint then action gives side-effect to Facet3

Monad1 Pattern Monad2 if constraint then action gives side-effect to Monad3

Pattern1 Form Pattern2 if constraint then action gives side-effect to Pattern3

Form1 System Form2 if constraint then action gives side-effect to Form2

System1 Meta-System System2 if constraint then action gives side-effect to System3

Meta-system1 Domain Meta-System2 if constraint then action gives side-effect to Meta-system3

Domain1 World Domain2 if constraint then action gives side-effect to Domain3

This new language is prototypical in as much as it can capture all the relations that we have been

talking about when applying the Peirce/Fuller principles to understanding the State Machine,

Petri Net and other constructs like the capsule.

Tangled Hierarchies Kent Palmer

 39

By generalizing the language to schemas of given dimension we realize that one of the things that

we get from the fact that there are two schemas per dimension is that these statements remain in

the same dimensional layers even though there is a synthetic relational schema between two

lower level schemas. But we also think that this could be reversed:

Pattern1 Monad Pattern2 if constraint then action gives side-effect to Schema3

In this case the two patterns overlap in Venn diagram style in the same monad. Also the last

schema to which the side effect is assigned may be any schematic level, in other words we do not

have to stick to a given dimensional level. For instance we might have . . .

Form System Meta-System if constraint then action gives side-effect to Pattern.

In this case the System-relational schema relates a Form to a Meta-system with a side effect

assigned to a pattern.

The key is that the schemas naturally have the ability to subsume computing languages within

them, but if we use the schemas directly then we can relate them to the principles of Peirce and

Fuller and thus get greater leverage than we might have, and by having a single statement form

we get the leverage that Gurevich ASMs have in terms of computability, but we have added to

that the context outside of the left and right hand sides. We have added a schematic context and

we have also separated out the side-effects from direct effects of actions.

Another point is that the hanging file structure relation between statements can be simulated by

merely having the higher level object as the first element in the statement so that it is not

necessary to have the file structure or mind map hanging outline structure in order to encode the

Semantic relations. We are assuming that every schematic object can have its type and attributes.

For the state machine then we could have statements in the schemata language like this:

State1 Transition1 State2 if inputs then action gives State2 to self

A list of these transition relations between states would comprise a state machine.

Place1 Transformation1 Place2 if marker_colorX then action gives marker_colorY to Place2

Similarly a list of these transformations between places for markers would comprise a petri net.

Expressing a protocol.

These statements take an if…then..else type rule and gives it a semantic context and a dynamic

within that context separating out the side effects from the direct effects and giving more complex

semantics by connecting multiple schematic objects through higher schematic relations.

One thing that comes out in this which is of interest is the idea that there is an interface between

the actions and the schematic relations, and in fact we can say that action across schematic

relation is causality, so this interface becomes very important. And in fact this interface relation is

precisely what needs to be combinatorially explored when we attempt to relate the various pure

hierarchies of agent, function, data, or event within the tangled hierarchy. There will be a separate

relation for each possible element that can be combined that has to be defined explicitly. What we

see in the schemata language is that two different schematic objects have a schematic relation

though a higher order schema, but that this relation may be actualized by inputs that meet the

Tangled Hierarchies Kent Palmer

 40

constraint, and if it is then an action is pushed across that relationship and the relation becomes

active and side-effects of that action may be produced which either effect one of the objects in the

relation or may effect a different object all together. From this a lot of meaningful structure could

be created which is semantically rich without having a syntax that is as complex as the domain

specific relations. What we are suggesting now is that the schemata language is the intermediary

between the tangled hierarchy representation and the ISEM domain specific languages, and this

intermediary language because it is regular like the if…then statements of Gurevich ASM

language (ASL) that it is amenable to analysis that could attempt to prove consistency,

completeness, and clarity and the other desired properties that we have been wishing to instill in

the Domain Specific Languages.

Approaching again the Central Question

We have noted that the Component Hierarchy where the entanglement of separate hierarchies

occurs is precisely in the same place where the State Machine / Petri Net // Turing Machine /

Capsule structure appears. We can see the capsule also as the elements that allows DARTS to

work, in as much as tasks inverted capsules (in which the state machine is in a capsule itself) and

it is via the semaphores that allow the global data to be encapsulated with a safety mechanism

that would allow the capsules to be shared among tasks. We have seen how we can apply the

Peircian categories of firsts, seconds and thirds to the Turing Machine as a structure that is the

basis of computing. We have noted that the tangles themselves must become knots at some level

because it is the knot that exemplifies self-organization and is non-dual between continuity and

discontinuity in as much as the knots have crossings. What is left for us to understand is how this

occurs. How do we transition from our Domain Specific Design Language to the tangled

hierarchies to tangled knots. And the answer to this is the one given in my Dissertation on

Emergent Design (UniSA 2009), which is that the minimal system of B. Fuller that is the

tetrahedron we see in the state machine, has other forms which are the knot, the torus and the

Mobius strip. We have associated these with the whole form, the picture, the plan and the model

in the dissertation that appear when we relate the representations with the repetitions between

schematic dimensions. So for instance the torus is the whole form, mobius strip is the picture, the

knot is the plan, and the tetrahedron is the model. The combination of the picture, plan, model

and whole form as wrapped gift is the super-synthesis, which we unwrap to get the whole form

back. It is impossible by mere repetition to create the whole form directly, rather we must

indirectly produce it though the conjunction of it with the wrappings of the gift. So the Turing

Machine is the tetrahedron. But another completely different representation of that is the knot

which is made up form the tangles in the hierarchy when they are involuted, i.e. the tangles form

closed loops. This would mean that the tangled hierarchies correspond to the plans. This leaves us

to think about ‘pictures’ (Mobius strips). And perhaps we can think of the domain specific

language representation as being written on these Mobius strips. The point of the Mobius strip is

that it reconciles the global with the local. Each of the domain specific constructs has separate

sentences that together form a whole description of something, like the state machine, petrinet or

some other of the representations made possible by the minimal methods. In the design language

we allow any fact known to be recorded, like a state, or a transition, a place or a marker. But then

as we know more we can condense these descriptions so that we get a synthesis that has global

meaning and that can be further condensed into a set of rules and then perhaps just a set of

vectors. So the domain specific language constructs have this way of balancing the local

statement about part of the minimal object with the whole of that object. This is very different

from how the Tangled Hierarchies interact, and is even different from how the model of the state

machine as tetrahedron works. All of these are various representations or repetitions of the whole

Tangled Hierarchies Kent Palmer

 41

form which is like the torus. The torus is a cycle within a cycle that is fused together as a direct

sum and thus as a synthesis. Programs are normally cycles within cycles within cycles. The cycle

of the main program contains many different sub-loops and perhaps some of those loops are

orthogonal to each other, for instance the loop of the operating system is probably orthogonal to

the loops of the applications. So the running system is more like the torus which is a whole form

of orthogonal or nested loops. But we cannot get to the running program without having plans

that appear as tangled hierarchies, pictorial visions that reconcile local with global, and synthetic

Turing machine representations. So after these machinations it turns out that the relation between

the tangled hierarchy and the Turing machine with state machine and petrinet duals are easy to

resolve the way it was done in my dissertation. The minimal methods are slices of Turing

machines. But also besides the slices the Turing machine as a tetrahedral model minimal system

also has other transmutations such as knots as plans, Mobius strips as pictures, and torus as

orthogonal loops (from the scheduler of the operating system, to the main cycle of the application

as well as loops within loops. So the central question of the way that the transmutations of the

minimal system fit together has already been dealt with in the relation of knot, Mobius strip,

torus, and tetrahedron that correspond to the plan, the picture, the whole form and the model. All

of these together form a synopsis (super-synthesis) that gives rise to the whole form by the

unwrapping of the gift rather than by construction.

This is fortunate because this structure has already been fully explored in my dissertation on

Emergent Design. There it was shown that there are four different versions of the Minimal

System which are the Tetrahedron (model), Knot (Plan), Mobius Strip (Picture) and Torus (whole

form). The key is that these figures all contain 720 degrees of angular change within them in

radically different ways, and it is precisely this amount of change (4piR) that is necessary to stand

still in spacetime. We know that real time systems without global clocks are relativistic. So these

various versions of the minimal system are what is necessary to model a relativistic system in a

stable way, i.e. from an inertial frame. This makes a minimal system of minimal systems, which

we now know represents the connections of the tangled hierarchies into rational knots, the

tetrahedron of the Turing Machine, the Mobius strip of the Domain Specific Languages that

reconcile global and local structures, and finally represents the torus of the operating system

(meta-system) cycle with the individual cycles of the applications and their Main Loops. So this

is a complete theoretical model of the real-time Software System from different inertial frames

via fundamental transmutations of the minimal system. This of course is what appears as an A

posteriori synthesis in the neo
2
-Kantian meta-episteme model from the Software Engineering

perspectives. This is the moment of views in the Emergent Meta-system cycle. The four

categories of Kant is at the moment of seeds, the four causes are at the monadic moment which is

the basis of the fourfold that expresses the relation of algebra/geometry, analysis/synthesis. Then

we get to the four views which are Agent, Function, Event and Data, and finally at the moment of

candidates we have the four moments of time which includes the co-now, or the virtual moment

which is the fourth moment of time that puts us in the Heterochronic era rather than the

Metaphysical era. The third moment of the Emergent Meta-system cycle is where the tangled

hierarchies that become knots and the tetrahedron of the Turing machine exist along with the

domain specific architectural design languages and the whole form of the computation that links

universal (metasystem) and particular application Turing machines (system) together into a

functional computational whole.

Tangled Hierarchies Kent Palmer

 42

