
GASM Theory and Practice -- Kent Palmer

1

GUREVICH ABSTRACT
STATE MACHINES IN

THEORY AND
PRACTICE

HOW THEIR USE COULD
TRANSFORM SYSTEMS

ENGINEERING AND SOFTWARE
ENGINEERING

Kent D. Palmer, Ph.D.

P.O. Box 1632
Orange CA 92856 USA

714-633-9508
palmer@exo.com

Copyright 2000 K.D. Palmer.
All Rights Reserved. Not for distribution.

Draft Version 0.03; 01/10/00; asmsys03a00.doc

Paper for ASM 2000
COMPLETE ROUGH DRAFT

Keywords: Evolving Algebra, Gurevich
Abstract State Machines, Formal Models,
Systemic Models, Pattern Models

Why Gurevich Abstract State
Machines are not a Formal Method

The Gurevich Abstract State Machine is not
considered a formal method by many
academics engaged in formal methods
research to the chagrin of the proponents of
this method. However, I believe that they are
right and that those who support and do work
on this method are fundamentally wrong
about the nature of the method that they are
developing. I would like to propose that the
Gurevich Abstract State Machine is a
systemic method instead of a formal method.
Before we can understand the place of this

method within our arsenal of means to help
produce systems or software it is necessary
to understand clearly what this method
actually is and does.

The Gurevich Abstract State
Machine came into existence as something
called Evolving Algebras. Gurevich
attempted to generalize the Turing Machine
so that it was not so difficult to encode
problems into a Turing Machine format. This
method has proved valuable as a means of
formalizing various languages. It is
beginning to be recognized as an important
method for systems engineering and software
engineering industrial practice. However, a
major barrier to adoption is the fact that its
proponents consider it a formal method and
because of that it is categorized together with
other formal methods which are essentially
useless for industrial development except in
some very narrow areas such as safety and
security. In order to break this log jam it is
necessary to dispel the myth that the
Gurevich Abstract State Machine Method is
formal. Instead we need to recognize it as a
systemic method. But in order to comprehend
that it is necessary to get a theoretical
perspective on the relation of forms to
systems.

Form and system are two separate
templates of understanding1. We are familiar
with formalisms from logic, geometry and
algebra. Essentially formal methods in
software and systems engineering use the
same logico-mathematical techniques to
prove properties about a given model. We
can understand this approach better if we
consider the meta-levels of every formalism.
All specific forms appear at the meta-level
zero. Forms as an abstraction occurs at

1 “Meta-systems engineering : A new Approach to
Systems Engineering Based on Emergent Meta-
Systems and Special Systems Theory” by Kent D.
Palmer, Ph.D.

GASM Theory and Practice -- Kent Palmer

2

meta-level one. We consider all the
mathematical categories such as set, group,
lattice, topos (includes logics of various
kinds), category as examples of formalisms.
When we ask what the meta2-level of a form
is, i.e. a form of a form, then we find that it
is the theorems that are proved about the
elements of the formalism. When we ask
what the meta3-level of the formalism is then
we find that the form of the form of the form
are the axioms that form the basis of the
formalism. There is even a meta-level four
which are the anomalies which we cannot tell
whether they are inside or outside the
formalism like the Godelian statements.

These are the basic meta-level
structures of a formalism. Formalisms are
best expressed using mathematical category
theory as a basis for understanding.
Mathematical Category theory establishes
how the various elements inter-transform.
Those inter-transformations are represented
as arrows. Category theory forgets the
elements and just treats the arrows. Category
theory also establishes the arrows between
various categories which are called functors.
Something proved in one category may
suffice for another category because the
structural isomorphisms between categories
are understood based on the functors.
Category theory uses the same language of
mapping arrows (that preserve the
associative property in spite of the relaxation
of the commutative property in many cases)
in order to define the category of
CATEGORY and a special category called a
Topos that defines various logics. This gives
a very powerful means of understanding the
basis of formalisms and their relation to
logic. Formal Methods normally define
models that are open to logico-mathematical
interpretation. This logico-mathematical
interpretation allows us to reason about the
formalized elements and prove properties as
theorems based on the posited axioms that
underlie the formal model. Examples of such
methods are Z, VDM, and Larch. There are
myriad such methods developed by

academics that have found little use in
industry due to the cost of implementing
them. Many of the things that are done in
systems engineering and software engineering
defy rigorous definition required for a formal
method.

We can think of a formal method as
a scaffolding around the system or software
that we intend to build. It defines pre and
post conditions on the functions of the
software. It normally also defines the data
types of the processed data. The most
powerful idea of formalism is the idea of
uninterpreted function types and data types.
This idea allows one to compute results
about the relation between functions and data
without knowing the exact values. One might
get an expression rather than a specific
result. The idea of uninterpreted function
types and data types allows the formalism to
operate at higher levels of abstraction rather
than only at the lowest level of abstraction
where the programming language defines the
algorithm and the data. It allows us to
analyze the formal relations within the
system and software without knowing
everything about it. Other formalisms
concentrate on defining distributed or parallel
execution such as Hoare’s CSP. Normally
formalisms specialize in one kind of
representational domain. Sometimes various
formalisms would have to be used to capture
all the aspects of a system or software
component.

But Form is not the only template of
understanding. Two other templates of
understanding at higher and lower levels of
abstraction are the system and the pattern. A
formal structural system combines all three
of these templates of understanding into a
single approach toward phenomena that that
has been used very successfully by Science.
George Klir in his book Architecture of
Systems Problem Solving attempts to
abstract the formal structural system and
give an abstract representation of this very
powerful method that combines different

GASM Theory and Practice -- Kent Palmer

3

levels of comprehension together. The formal
level allows us to make proofs. This is the
strongest kind of comprehension we can
have. But if we cannot prove things then we
attempt to explain them with structural
explanations at the level of the pattern
template of understanding. If we cannot
explain then we fall back further to merely
describing the phenomena systematically.
The systems template of understanding gives
us a framework for understanding the
gestalts we see out in the world and how they
fit together. The pattern level of
understanding instead helps us understand
the ordering relations between contents of
forms. Thus we can see that there is a nesting
of the various templates of understanding.
The countable forms contain qualitative
contents which we categorize and describe as
transformations at the structural level. The
ordered pattern of content is transformed into
another ordered set of content so that we can
explain the transformations of content even
when we loose the ability to refer to the
forms that contain those contents. The forms
appear as objects within a system which
contains many different kinds of forms
perhaps from different categories and
describes their relations to each other.
Description at the system level is the weakest
way of comprehending things which is
augmented by explanation at the pattern level
that understands transformations between
categorized contents which is again
augmented by a formalism at the level of
form which will sometimes allow proofs in
some narrow range of well formed
phenonomena that complies to the properties
of our algebras or geometries or logics.

Both the system and pattern levels
have their own special methods that apply at
their level of comprehension. For pattern we
consider the work of Grenander who has
developed a mathematics of pattern. For
system there are also many examples of
structuralism in individual sciences. For
instance, Jacque Monod develops a
structuralism to understand evolutionary

theory in Chance and Necessity. Most
structuralisms are specific to disciplines like
the structuralism of atomic theory that
underlies chemical reactions. Underlying
atomic theory is the structuralism of
fundamental particle theory. Underlying
fundamental particle theory is the
structuralism of quark theory. Quark theory
may be underlain by the structualism of
string theory in the future. Structuralism is
the fundamental method of science for
understanding the world. This is because
formalisms have a fundamental weakness
when it comes to handling discontinuities in
forms, space, or time or other variables. In
formalisms there is only one kind of formal
element. But in systems there are various
kinds of elements. Formal elements are
assumed to have homogeneous contents. But
in actuality contents come in various kinds
and map across transformations in various
ways which cannot be captured in any
formalism. So the strength of the formalism
in terms of proof is balanced by their
weakness in terms of describing the
interactions between different kinds of
contents or forms form various categories. In
both cases there are transformations in order.
At the level of content we see global patterns
of ordering of contents that are not easily
captured by the outlines of forms. In
categories we see various kinds of orders
through the various combinations of ordering
properties in sets, lattices, groups, rings etc.
Pattern and System need to augment the
formalisms in order to understand the
discontinuities that exist in the world as we
discover it.

The fundamental differences between
pattern, form and system are underlined as
we take each of these to their various logical
meta-levels. The meta-levels of pattern are
categories, spectra and singularities. The
meta-levels of system are rules, properties
and exceptions. See how different the second
meta-level is in each case. We can compare
categories, theorems, and rules and see how
different they are. We can compare spectra,

GASM Theory and Practice -- Kent Palmer

4

axioms, and properties of elements and we
see a similar fundamental difference at the
third meta-levels. Similarly at the fourth
meta-level we have singularities, anomalies
and exceptions. The fourth meta-level raises
the temperature of our search if we apply a
method like simulated annealing. The more
oddities and peculiarities we have the wider
our search in the landscape of all possible
formal structural systems. The formal
structural system has its basis in spectra,
axioms and properties of elements. It uses
these to articulate categories, theorems and
rules. The formal structural system itself is
build up from these elements which are
further articulated in relation to each other to
describe the various different kinds of
contents, forms and kinds of categories in a
system.

Where we can point to Grenander’s
unique mathematics of pattern it is difficult
to find something at the system level to point
at as a proper systemic method. It is my
belief that the Gurevich Abstract State
Machine plays this role. This is because it is
essentially a method that defines things in
terms of rules. The properties of things and
their relations define system states that are
then dynamically modeled using rules to give
the diachronic actions of the entire system.
Thus where Grenander's method should be
called a patternism or a pattern method, and
Category theory and other formalisms like Z,
VDM and Larch should be called a Formal
Method, then Gurevich’s ASM should be
called a systemism because it is a system
specific method. If this is true then this
method is mis-classified when we call it a
formalism and it is no wonder that other
formal methods researchers reject it’s claim
to be a formal method. It is a systemic
method and should not be classified with
other formal methods at all. This was
intentional when Gurevich produced the
method because his intent was to abstract the
structure of the Turing Machine. The Turing
machine is not something formal. It is a
model of any computational device. A

computational device is a system of diverse
elements that work together to achieve the
result of computation. Computational devices
produce a result across time. Formalisms are
generally outside of time and are static
representations. Thus formalisms rightly are
synchronic slices of what the Turing machine
computes. But the Turing machine itself is at
a higher level of abstraction which is
essentially systemic because various kinds of
forms must cooperate to give the result of
computation.

Rules are the meta-level two of a
system. They are different from theorems. In
fact rules give us the basis of proof which
ties the statements and lemmas of theorems
together into a logical argument. An
argument can be thought of as an “anding”
of various propositions on the left-hand-side
which implies the conclusion on the right-
hand-side of the conditional structure. A
Theorem is an argument in the form of a
proof concerning the relations of the elements
of a formal system. Once proven theorems
are always true. But rules may enter and
leave the system as the system changes
phases. Rules are not proven but instead
posited which is in keeping with the
descriptive nature of the system. The
categories of pattern contents and their
generators are again of a different order. In
order to understand various phenomena and
produce design theories all of these levels of
understanding are necessary. But each has a
specific and different role to perform. There
does not seem to be other good examples of
the kind of abstraction at the level of system
that the Gurevich ASM method provides. It
goes beyond what any Formalism can
provide because it encompasses the workings
of the whole system as a dynamic entity
rather than a series of static slices. Yet it is
weaker than a formalism because it is
essentially descriptive, or its inverse which
posits a specification.

The system is a high level
abstraction which may be understood more

GASM Theory and Practice -- Kent Palmer

5

concretely as a social gestalt. The gestalt has
a dual which is a flow. A system like the
Heisenberg uncertainty principle combines
both gestalt and flow as irreconcilable but
complementary ways of viewing phenomena.
A gestalt is seen as in psychology as a
tension between figure and ground. When the
figure is submerged and becomes a reference
point and the background is raised in our
attention flowing across the reference point
then the gestalt is transformed into a flow. It
is interesting that this duality between gestalt
and flow is not recognized in the literature. A
system is a series of gestalts synchronically
embedded in a flow. We see these gestalts as
we look from element to element in order to
discern their relations within the system.
Many times systems are reified into objects
which contain statically other objects. We
render these systems dynamic when we think
of the changing relations between elements
over time as seen in an idealized movie of the
interaction of the elements in a system. But
in this we forget the idealized observer of the
system. When we consider the system as
gestalt and flow then we know that the
system is always understood only in relation
to an observer, in a way similar to that
discussed by Guy Jumarie in Subjectivity,
Information, Systems. When we retreat from
the abstraction of the system then we
discover two phenomena that exemplify the
system better than most and which supply us
with the paradigmatic cases of a system.
These are the game and language.
Wittgenstein has recognized the importance
of these two examples by coining the term
"language game" to describe the systemic
context within which sentences as elements
must be understood within an argument. The
second meta-level of language is its grammar
while the second meta-level of a game is its
rules. We generally speak of the rules of
grammar because we understand that
grammar gives proscriptions for proper or
well formed sentences. It is precisely this
level of grammatical rules of a computational
which the Gurevich Abstract State Machine
specifies. Thus, if we do not understand what

a system is because of its abstractness then
we can always appeal to either language or
games as the basis for our understanding of
the nature of the definition of a system that
the GASM supplies to us. If we move up to
meta-level three we find in games the
definition of the properties of the pieces. If
we move up to meta-level three we find in
language the definition of the phonemes and
letters that are the basis for expression. At
meta-level four in games there are the
exceptions to the rules such as the castling
move in chess or the violations of verbal
conjugation patterns in language. Pinker2 has
recently argued that rules and exceptions in
grammar activate different parts of the brain
and thus both are necessary for language.
Meta-level three of the language game is
always the allowed exceptions to the rules or
properties defined at meta-level two. What is
fascinating here is that this systemic meta-
level three nests into the template of
understanding of form because it is the
specification of the properties of the thing
that allow us to isolate the figure of the form
within the gestalt. Thus, there is a very close
relation between the template of the system
and the template of the form. Similar kinds of
nesting exist for the other templates of
understanding as well as explained in the
paper "Meta-Systems Engineering" by the
author.

Each of the meta-levels of the
templates of understanding may be
generalized across all the templates of
understanding in order to yield a picture of
the meta-levels of Being which divide into
four kinds: Pure, Process, Hyper and Wild.
These kinds of Being make up the various
meta-levels of our world. In each case the
meta-level zero is the being in question
whether it be a concrete system, form or
pattern. Meta-level one, Pure Being, is
always the frozen abstraction of the class of
beings described by a particular template.

2 Steven Pinker, Words and Rules : The Ingredients
of Language (Perseus Books, 1999)

GASM Theory and Practice -- Kent Palmer

6

Meta-level one corresponds to what
Heidegger calls the present-at-hand in Being
and Time. Meta-level two is always
something that allows for the dynamism of
that abstraction. So for instance in forms the
dynamism is the proofs that produce
theorems from axioms. In systems this
dynamism is given by rules which describe
how a system will react in the next
synchronic slice of a diachronic progression.
These rules may be changed by meta-rules in
order to create discontinuous action from
moment to moment as the ruleset varies. For
a pattern it is the categorization process that
produces change as we see patterns based on
the imposition of various categorical
templates. The Process Being level
corresponds to what Heidegger calls the
ready-to-hand in Being and Time. Meta-level
three corresponds to what Heidegger calls
Being (crossed out) and what Derrida calls
differance, i.e. differing and deferring. At
that level ambiguity and indecision are
introduced. It is interesting that Hyper Being
appears at the system level as the definition
of the properties of the entities that are
allowed into the system being defined by the
rules. Gurevich ASM does not have a
language for defining the properties of such
entities. In terms of the Turing machine we
find this language can be anything that is
expressible in codes and can appear on the
tape. In terms of games it is always the
definition of the pieces and players of the
game. In terms of language it is the basic
phonetic or letter forms that may be used as
a basis for speech or writing. This is in
contrast to the axioms of the formalism and
to the spectra of the pattern level that the
categorization has broken up and defined in
terms of regularized intervals. Axioms may
have undecideable aspects like the parallel
postulate that generates various geometries
based on our decision as to whether parallel
lines cross or not. This indecision point of
ambiguity leads to different kinds of
formalisms for geometry. Similarly,
indecisiveness at the level of the system may
admit variations in the kinds of players and

pieces and boards that may be used to play
the game. We recognize this when ever we
see a strange chess board with outlandish
pieces. In checkers there is the
transformation of a piece into a double piece
at the end of the board which can move in
any direction which makes the endgame so
different from the foregame. This difference
in pieces marks a difference in the play of the
game in a striking manner. With respect to
the spectra of the patterns there are
ambiguities between various category
systems such as those found in systematics
and ecology. Various animals are classified
differently based on different category
schemes. The same spectra may be broken
up in various ways leading to ambiguities in
classifications that can have surprising
results. All these various ambiguities lead us
to have an appreciation of the strangeness of
Wild Being as it appears in the highest meta-
level of the various templates of
understanding. This final meta-level is the
fourth which encompasses exceptions,
anomalies, and singularities. These are all
things that directly violate the property rules,
axiom theorems, and spectral categories in
various ways that are unexpected and
strange. These incursions of Wild Being
always lead us to raise the temperature of
our search in simulated annealing for more
optimal rules, axioms, or categories. Notice
that rules and categories exist at meta-level
two while axioms exist at meta-level three.
Thus the operative level by which we judge
what is fundamental in each template of
understanding is not the same. Properties of
elements of systems, axioms, and spectra
share the same level while rules, theorems,
and categories function at the same level. But
we need to note how different these various
expressions of the meta-levels of the
templates of understanding are. Rules and
Properties of things within a system are very
different from the theorems and axioms of
formalisms or the categories and spectra of
paternisms. This fundamental difference is
what we have to keep in mind when
considering weather GASM is a formalism

GASM Theory and Practice -- Kent Palmer

7

or not. GASM is not a formalism but the
only known systemism, it defines the rules of
computational systems. It has both the
weaknesses and strengths of systemic
models. We cannot prove anything with it
but only show existentially a working model
of the computational system we are
describing. It is strong in the sense that it
covers a much wider field of phenomena than
the formalism, but it is narrower in the sense
that we cannot do proofs in it as one might
do in a formalism. However it is precisely
this which is needed in software engineering
and systems engineering for the construction
of complex computational systems.

How Gurevich Abstract State
Machines relate to Requirements and
Architectural Design Methods

If we consider the GASM method to be a
systemism then it is uniquely qualified to
stand between requirements and design in
both software engineering and systems
engineering industrial practice. Requirements
ideally are single linguistic statements of
distinction and desire on the part of the
customer. Each requirement should be stated
as a single aphoristic statement as a sentence
standing alone using a shall. Even when we
attach notes to these statements to provide
context there is still a wide variation of
interpretation that is possible given any set of
requirements. The Gurevich ASM can serve
a good purpose as the interpretation of the
set of requirements as a whole. We start with
a single rule that describes at a very high
level of abstraction the entire system that will
satisfy the functional requirements stated in
the requirements for the system. Sometimes it
is noted that there are three kinds of
requirements for a system, functional, non-
functional which are qualitative or
performance related and constraints. This
reminds us of the meta-levels of the system
were functional requirements corresponds to
rules, non-functional requirements

corresponds to the properties of elements or
the system as a whole, and the constraints
corresponds the exceptions in as much as
constraints make it possible to identify those
things that violate constraints. Thus, the
three major kinds of requirements for a
system remind us of the meta-levels of the
system itself. It is no surprise then that the
rules make possible for us to specify the
functionality of the system in a causal
context of if … then … statements. In fact,
it can be easily seen that rules in this form
encompass all the fundamental viewpoints on
the real time system, i.e. agent, function,
event and data. Surprisingly rules also have
the meta-levels of information within in them
which takes data or event and lifts it up to
the level of information, then knowledge and
wisdom as the combination of experience and
knowledge. As we articulate the rules of the
GASM to describe the causal nature of the
system being described we first expand them
to a handful of rules that describe the
emergent properties of the system. Then we
consider the monitored and controlled
variables and describe bridges between them
using rules. Finally we begin to express the
internal modes and states of the system as a
whole until we produce a ground model that
can be discussed with the customer in order
to hammer out a mutually agreed upon
interpretation. Once the ground model has
been created and agreed upon then we can
use the GASM as a framework to capture
our knowledge of the system being developed
down to any level of articulation we wish. In
producing the GASM causal model of the
system we speculate as to the kinds of design
elements that might be necessary to create
the system and we might include some of
these hypothetical design structures as a
vehicle for writing rules but these
hypothetical design structures do not bind us
to any particular design and are considered
only temporary postulates which will allow
expression of the causal structure of the
application under development. That
structure will have to be fully designed once
the interpretation of the requirement are fully

GASM Theory and Practice -- Kent Palmer

8

specified.

We note that in order to produce a
picture of the properties of the elements that
are allowed into the system it is necessary to
pursue an object oriented exercise. In this
exercise we might wish to have rules
relegated to the objects as methods. Thus the
top down definition of the emergent
properties of the system by rules is
complemented with a bottom up definition of
the attributes and rules that specify an
element within the system. This definition of
the objects and their properties and perhaps
their dynamic causal behavior allows us to
model the third meta-level of the system
under construction. Thus we capture the
qualitative and performance non-functional
requirements of the system in terms of the
interaction of its elements rather that in terms
of the emergent properties of the system as a
whole. Beyond that there is the modeling of
the constraints within which the system is
bound and the description of exceptions.
These may be captured by special rules that
are tied to the exceptional cases or that
attempt to apply to all the objects within the
system under particular circumstances. In
this way we see that through using rules in
various ways it is possible to describe all
three meta-levels of the system. Rules are
extremely versatile and this is in fact their
unique linguistic capability that may be put
to use in describing systems in general or
games or language at a more specific level.
Phonemes or letters or pieces or board can all
be considered as objects with attribute
ranges. When we gather together the
attributes together into a form and allow that
form to have behavior we convert the set of
attributes into an object. At the third meta-
level of the system we have only a nexus of
attributes (what Klir calls the source system)
which we transform into variables with
specific relations to each other at the level of
pattern and group into formal objects. This
nexus of attributes can be described as a set
of rules operating on spectra given a specific
category scheme. In this way we see how

closely the templates of understanding of
form, pattern and system really are at the
higher meta-levels. All the various meta-level
models work together to give us a
comprehensive basis for understanding that
we call the formal structural system. This
combination of the templates of
understanding gives us a great deal of
leverage in comprehending the various
aspects of our world in the pursuit we call
science.

The author has created a
comprehensive picture of the field of possible
design methods called the Integral Software
Engineering Methodology. That method
posits that there are four fundamental
viewpoints on every real-time system and
that there are a set of minimal methods that
bridge between these viewpoints in the design
process. What we notice is that these various
design methods proliferate the kinds of
representations that are needed to perform a
comprehensive design and to describe the
result. These might include the following
minimal design methods: Petri Nets, State
Machines, DARTS of Gomma, Use Cases,
Virtual Layered Machines, Worldlines and
Scenaios of Agha, Dataflows of Yourden and
DeMarco and Objects of Simula and
Smalltalk fame, Entity Relationship Attribute
diagrams of Chen, Interval Logic of Allen, as
well as the relations between Data and Event
that give us the structure of a Turing
Machine. We note that the Gurevich ASM
gives us a causal model of Turing
computationally in a set of conditionals that
unify the viewpoints on design. When we
fragment those viewpoints in order to zoom
in on the design that is implicit in our ground
model then the Turing machine is relegated to
merely the relations between elements in
spacetime while all the causality is spread
out in the interaction of the various elements
of the minimal methods. At the level of
Architectural Design the design elements
implicit and hypothetical in the GASM
become explicit and are posited directly in
terms of the interaction of the minimal

GASM Theory and Practice -- Kent Palmer

9

methods.

The relation between the
requirements, GASM and architecture is very
interesting. We can see that requirements are
wholly linguistic sentences that define
together the emergent properties of the
system under consideration. They use the full
expressivity of language in their definition.
But this leads to the problem of interpretation
of these sentences. GASM allows us to
specify a particular interpretation which
emphasizes causality and functionality but
also expresses agency, event and data. This
interpretation can function at all the meta-
levels of the system defining functionality,
non-functional quality and performance
goals, as well as exceptions and constraints.
The linguistic requirements can do this as
well but lack the uniformity of syntax that
the GASM produces. However, the GASM
cannot express the various kinds of relations
needed to define design because each rule
fuses agent, function, event and data
perspectives. It allows us to express the
entire system as one rule, or a hand full of
rules that describe emergent properties, or as
bridges between monitors and control
variables, or as descriptions of reactions in
terms of modes and states. These global
views of the system are complemented by
descriptions of attribute nexes and their
associated rules that can be seen as objects
with form and behavior. When we apply
global rules to these objects or single some
out as exceptions we describe the fourth
meta-level of the system. Yet this view given
us by GASM is monolithic and can only be
broken apart by the separation of the
viewpoints which allow the emergence of the
minimal methods as alternative forms of
relations within the system that address
various characteristics of real time systems
that cannot be handled by the GASM
directly. Boerger says that the GASM may
be taken all the way down to the level of
code. But this is not a good practice because
at various levels distortions and warpages are
introduced which should be handled by

architectural design and programming
languages. One of those warpages is that if
the architecture is not made explicit in an
architectural design then it cannot be
optimized for the application. Minimal
methods exist at the level of form rather than
system. Each of these minimal methods can
be analyzed to show that they are composed
of the four fundamental kinds of pattern, i.e.
value, sign, structure and process. Value and
Sign are continuous and structure and
process are discontinuous. Structure
embodies discontinuity in space (data) while
process embodies discontinuity in time
(events). Values are seen in accumulator
registers while signs are seen in pointer
registers in the CPU. They are embodiments
of what Heidegger calls the present-at-hand
and ready-to-hand respectively and what
Merleau-Ponty calls pointing and grasping.
The combination of CPU cycles and memory
locations give us the plenum in spacetime of
discontinuities that these mechanisms use to
produce illusory continuity. For a deeper
analysis of this see the authors paper on
"Software Ontology"3. The relation of the
four viewpoints on real-time systems and the
minimal methods to systems theory can be
found in the author's paper on Software
Engineering Design Methods and General
Systems Theory4. The major point of this
section is that when GASM is used to
mediate between requirements and design, at
either the software engineering level or the
systems engineering level then we can see a
progression of reification in which the
fragmented aphorisms of the requirements
are converted to the single conditional syntax
and unified in a construct that combines the
four viewpoints with the various meta-levels
of data, information, knowledge and wisdom.
But this description at the systemic level

3 See second chapter of author’s Wild Software Meta-
systems at
http://server.snni.com:80/~palmer/apeiron.htm
4 See first chapter of author’s Wild Software Meta-
systems at
http://server.snni.com:80/~palmer/apeiron.htm

GASM Theory and Practice -- Kent Palmer

10

needs further elaboration at the level of form
where we describe the interaction of the
various minimal methods from the various
separated viewpoints. Once an architecture
has been elaborated then we can apply the
normal formal methods like Z, VDM and
Larch to erect a scaffolding around the
architecture and prove various properties
about it. But we can also prove some
properties at the systemic level once we have
a representation in terms of rules. Being has
four aspects: identity, presence, reality, and
truth. The relations between these aspects of
Being define the six fundamental properties
of every system which are verification,
validation, coherence, consistency, well-
formedness (clarity) and completeness. These
properties of the system may be reasoned
about at the level of the GASM directly.
Formalisms themselves exist as systems
when they are used to produce a set of
statements. Thus formalisms to the extent
they are considered systems of statements
may express these properties. Other rules
may be added to the GASM to specifically
embody other properties than these
fundamental ones. The point is that every
formalism needs for the architecture to be
specified in order to operate on it in terms of
logic. GASM alone can describe the
emergent properties of the system as a whole
with little or no articulation of an implicit
architecture. Thus, when we move down
from the level of the system to that of form
when we create the architectural design that
is when the other formal methods are most
useful.

GASM allows the Software Engineer
or Systems Engineer to describe directly the
essence of the system to be created in terms
of its inherent causality, in a way that brings
out its functional, non-functional, and
constraint requirements and interprets them
concretely. Thus, GASM has a unique role to
play which it cannot perform as long as it is
considered just another formal method, as
useless as all the others for the industrial
designer. But instead we must consider the

uniqueness of the GASM method as deriving
as a model of a Turing computational
system, which is fundamentally descriptive
rather than honed to provide proofs.
Designers need such a dynamic descriptive
technique to mediate between the scattered
field of requirements and the myriad elements
that work together to produce a design.
GASM allows a moment of unity between
these different kinds of fragmentation and
forms a bridge between the meta-system or
general economy of aphoristic requirements
statements and the formal composition of the
design by describing the restricted economy
of the application being specified as the
dynamic rules that govern the causal
behavior of the system.

Applying GASM in an industrial
setting

GASM has been applied to a large
scale software development project of a real
time nature by the author. In that exercise
many interesting lessons were learned that
should guide our application of GASM to
other projects of an industrial scale. Some
lessons from this experience applying GASM
will be mentioned in this section.

The good thing about GASM is that
you can describe how to apply it in one
sentence: Describe the system in rules. This
makes for rapid comprehension of the
method. The idea that GASM is not
embodied in a particular formal language
needs to be emphasized always because it is
necessary that the person learning the method
creates their own linguistic embodiment of
the method in order to assure their
understanding of it. Formal languages that
embody GASM should be de-emphasized as
that makes it seem like all other formal
methods that emphasize learning specialized
logical languages.

The GASM interpretation may be
considered an appendix to the SRS at the

GASM Theory and Practice -- Kent Palmer

11

Software Engineering Level or the System
Specification when used at the Systems
Engineering Level. This appendix serves to
specify the interpretation of the natural
language requirements in the document as a
prelude to either system design or software
architectural design.

The GASM may be developed in
parallel with a dataflow model in which case
the two should be reconciled before entering
detailed design. The dataflow model should
remain essential or logical and should not
embody design decisions.

GASM is a natural bridge between
Systems Engineering and Software
Engineering. The best case is where there is a
GASM model at the System Level and also
at the CSCI level for each CSCI. These
models should be connected to each other
through an IRS or ICD at the system level.
The IRS/ICD is the best basis for organizing
the GASM models at each level. They
specify the inputs and outputs at the
Software and System levels respectively.
Every input should be associated with a rule
which chains with other rules until all the
outputs are produced. Through double
bookkeeping of outputs it is possible to
preserve the output sections of these
documents and show which rule they emerge
from in the nesting of rules under the input
sections. Internal rules need to be placed in
another section of the model. By using the
IRS/ICD as the framework for modeling
there is a natural place for the GASM model
to fit into the documentation. SRS and IRS
are produced together. The GASM model
should be an appendix to the SRS but based
on the IRS so that it actually mediates
between these two traditional documents.
The same may be said for the System
Segment Spec and the Interface Connection
Document.

An inverse GASM model may be
produced to embody the test cases for the
system. This is probably the best use of the

GASM model because it specifies through
this inversion the test conditions at a very
early stage in the development. This inverse
model may provide a view of the meta-
system of the system being constructed.

We may produce an architectural
model of the system early by distributing the
rules of the GASM model among agents in a
hierarchy of processors and tasks that make
up the system under construction. It may
mean that certain of these agents pass on the
messages that are finally processed by
another agent. Distribution of the GASM
model with an agent hierarchy gives a sketch
of the requirements for the architecture that
needs to be defined.

The most difficult thing about using
the GASM method is beginning to think
causally in terms of rules. It is best to first
attempt to describe the whole system in terms
of one rule, or a very few rules that capture it
as something unified at the highest possible
level of abstraction. Then from this it is best
to advance to a set of rules that embody the
bridges between the monitored and controlled
variables of the system. After that one might
embody the modes of the system which might
occur in degraded or other special system
configuration circumstances. Finally the
highest level states of the system might be
embodied. These highest level states can be
considered the ground model which can be
discussed with the customer in order to align
expectations. The ground model does not
embody any internal structures produced by
derived requirements. As we continue refine
the GASM model we introduce derived
requirements and speculative design
structures increasing the resolution of our
model of the system under construction. We
may continue this refinement process
indefinitely but practically it should at least
be continued until detailed design. Thus, we
keep this model going all through
Requirements Engineering and Architectural
Design phases of new development. We
consider the GASM model to be an interface

GASM Theory and Practice -- Kent Palmer

12

between the SRS and IRS on the one hand
and between Software Requirements
Engineering and Software Architectural
Design on the other hand. Or if we are using
it at the System level then it is an interface
between the System Requirements Document
(SRD) and the Interface Connection
Document (ICD) and between Systems
Requirements Engineering and Systems
Architectural Design.

GASM as a method is the same
whether it is applied at the level of the entire
system which includes both hardware and
software or at the level of the software
system as an independent whole. In both
cases it serves as a bridge between
requirements and architectural design. This
bridge does not exist in current practice and
thus it is difficult to reconcile the
requirements and the design in many cases.
Requirements are normally open to many
interpretations by the various stakeholders.
The GASM model nails down a particular
interpretation early and allows it to be agreed
upon by all the parties involved because it
makes the specified interpretation visible as
an appendix to the requirements document. It
serves to connect all the functionality
causally and thus produce a constrain on the
space of possible designs which helps the
Architect be sure that all the functionality
and its causal linkages are embodied by the
software design.

Class room exercises show that
students can quickly pick up this method and
it is easy to relate to requirements
documents. In general doing a GASM model
uncovers mistakes in the requirements
document that need to be repaired as the
requirements development proceeds. GASM
gives a basis for the mental simulation of the
system that answers to the requirements
proposed by the designer and the
requirements analyst either as a team or as
one person doing both jobs. GASM is an
excellent language for communication
between these two job functions if they are

being done by two people instead of one.

GASM gives us something to count.
We can keep track of introduced, changed
and deleted rules as the GASM model
evolves. GASM because it executes gives us
a criteria for when we are done with the
requirements process. We are done when a
complete ruleset is built which executes at
the appropriate level of abstraction. It gives
us intermediate mile stones because it has
various levels of refinement. Its execution
may be automated either by current Rule
Based expert systems technology or by
building programs using If… Then…
statements. Thus the GASM model may be
turned into a simulation of the whole system
which may be tested within a simulation test-
bed to verify the behavior of the emergent
system prior to its design and
implementation. It is because GASM models
can capture the emergent behavior of a
proposed system without recourse to the
specification of the parts of that system
beyond some speculative sketches that
GASM is an excellent model at the systemic
level rather than at the lower formal level
necessary.

The GASM model connects not only
requirements to design but also connects
design to integration and requirements to test.
The inverse GASM model provides a
definition of the test environment that is
necessary. The inverse GASM model at the
CSCI provides the test environment for the
CSCI and the GASM model at the System
level provides the test environment for the
System level tests. Also the integration of
these various GASM models indicates the
difficulties that will be encountered in the
integration activities.

The maxim “build it twice” which is
seen by many developers as the only way to
get the optimal design of a system is followed
when we add GASM models to our
development process. The first build is the
GASM model which allows us to work out

GASM Theory and Practice -- Kent Palmer

13

the causal structures of the software under
construction. Then we build the software
itself based on what we learn from the
executable and mental simulations of the
GASM model and anti-models.

Conclusion

GASM is not a formalism but is
instead a systemism. This means that it
functions not on the level of the formal
template of understanding but on the level of
a systemic template of understanding. These
two templates have completely different
properties and thus need to be distinguished.
These differences become apparent if we ask
ourselves what are the meta-levels of the
form and the system respectively.

GASM is an excellent bridge
between requirements and architectural
design at both the Software Engineering level
of abstraction and the Systems Engineering
level of abstraction. When we use this
bridging method on our projects we find that
it confers many benefits and makes our
software and systems development processes
more efficacious, i.e. more efficient and
effective.

GASM deserves to be piloted in
industry so that these beneficial qualities of
the method may be experienced by other
practitioners. At this point there is a gap
between requirements and architectural
design which needs to be bridged in order to
produce a smooth transition between these
necessary phases of development. The
application to these upstream phases has
direct implications for both test and
integration. The inverse GASM model
produces an early view of the necessary test
environment and the integration of software
and hardware level GASM models into a
system level GASM model gives our first
indications of the difficulties that will be
encountered in integration.

The promise of the GASM method is
the transformation of both Software and
Systems Engineering practice due to the fact
that this method unifies what are now
separate phases with separate models and
methods into a synthetic and coherent overall
structure of methods and processes. We
notice that the GASM model at the software
level fills the gap between the SRS and IRS,
between requirements engineering and
architectural design. We notice that it also
serves as a bridge from architectural design
to integration and from requirements
engineering and test. We notice that we could
ideally take our refinement down to the
implementation level. In other words the
ruleset serves as a glue to connect all the
different non-routine parts of software
development, i.e. requirements engineering,
architectural design, integration, test together
and then to ideally connect these with the
routine software development processes as
well, i.e. detailed design, implementation and
module test. This glue like or bridging
function we see in the GASM method with
respect to the other processes and methods of
software development comes from the fact
that it is in fact a systemic method instead of
a formal method. The GASM embodies the
emergent properties of the software system to
be constructed and serves to create a process
and method level infrastructure between the
now various and disparate methods and
processes we find in current software
development practices. GASM not only
embodies the system to be constructed but
also turns the development process into an
integrated, coherent and synergistic system
as well. By introducing GASM into the
software development process we transform
the independent and autonomous
development processes with their associated
methods into a whole which are now
independent and separate. In other words,
now these various phases have only an
implicit coordination that we see in the
resulting end product. By introducing GASM
this coordination becomes explicit and is
embodied in a specific model which has

GASM Theory and Practice -- Kent Palmer

14

many unifying and bridging uses within the
development process itself. GASM modeling
represents explicitly the system level glue
that holds together the fragmented
requirements and the articulated design at the
representational level and holds together the
various software development processes at
the method and process level. GASM
represents explicitly the now hidden
synergetic effects of the emergent properties
of the system in a way that can be seen and
manipulated directly by the developers. The
same thing could be said at the Systems
Engineering level of abstraction.

GASM’s transformative potential
comes from this rendering explicit of the
emergent systemic characteristics at the
representational, methodical and process
levels within the development process at both
the software engineering and the systems
engineering levels.

Acknowledgements

I would like to thank Egon Boerger
for teaching me the Gurevich Abstract State
Machine Method. I would like to thank
Philipp Kutter for soliciting this paper for
ASM 2000. I would like to thank my
students at the University California, Irvine
Extension for their work learning and
applying the method from which I have
learned so much.

About the Author

Kent Palmer is a Senior Systems Engineer at
a major Aerospace Systems Company. He
has a Ph.D. in Sociology concentrating on
Philosophy of Science from the London
School of Economics and a B.Sc. in
Sociology from the University of Kansas.
His dissertation was on The Structure of
Theoretical Systems in Relation to

Emergence5 and concerned how new things
come into existence within the Western
Philosophical and Scientific worldview. He
has written extensively on the roots of the
Western Worldview in his electronic book
The Fragmentation of Being and the Path
Beyond the Void6. He has at least seventeen
years experience7 in Software Engineering
and Systems Engineering disciplines at major
aerospace companies based in Orange
County CA. He served several years as the
chairman of a Software Engineering Process
Group and now is engaged in Systems
Engineering Process improvement based on
EIA 731 and CMMI. He has presented a
tutorial on “Advanced Process
Architectures8” which concerned engineering
wide process improvement including both
software and systems engineering. Besides
process experience he has recently been a
software team lead on a Satellite Payload
project and a systems engineer on a Satellite
Ground System project. He has also engaged
in independent research in Systems Theory
which has resulted in a book of working
papers called Reflexive Autopoietic Systems
Theory9. A new introduction to this work
now exists called Reflexive Autopoietic
Dissipative Special Systems Theory10. He
has given a tutorial11 on Meta-systems
engineering to the INCOSE Principles
working group. He has written a series on
Software Engineering Foundations which
are contained in the book Wild Software
Meta-systems12. He now teaches a course in
“Software Systems Requirements and Design
Methodologies” at University California
Irvine Extension.

[end of document]

5 http://server.snni.com:80/~palmer/disab.html
6 http://server.snni.com:80/~palmer/fbpath.htm
7 http://server.snni.com:80/~palmer/resume.html
8 http://server.snni.com:80/~palmer/advanced.htm
9 http://server.snni.com:80/~palmer/refauto2.htm
10 http://server.snni.com:80/~palmer/autopoiesis.html
11 http://dialog.net:85/homepage/incosewg/index.htm
12 http://server.snni.com:80/~palmer/wsms.htm

GASM Theory and Practice -- Kent Palmer

15

