
Reworking the Integral System Engineering Method

Domain Specific Languages

Kent D. Palmer, Ph.D.

Orange, CA 92856 USA 714-633-9508

kent@palmer.name http://kentpalmer.info

Abstract

My recently completed Ph.D. in Systems Engineering on the subject of Emergent Design
i
 focused on

the dynamics of the architectural design process. This study led the author to develop certain fundamental

ideas that would initiate a refactoring of the Integral Software Engineering Methodology
ii
 and transform it

into an Integral Systems Engineering Methodology (ISEM), which would then allow architectural design

to be applied as an alternative to the UML/SysML paradigm at the Systems level. In this paper we will

discuss how the ISEM language has been upgraded and we will propose a rationale for its use in light of

the future direction of Architectural Design and how we can define it when we use Domain Specific

Languages and Model Based Design. This is part of a larger research program that focuses on using

Semiotics to understand Sign Engineering as defined by Pieter Wisse
iii
. We will also highlight the

importance of the Gurevich Abstract State Machine Method
iv
 and how it can be used as a basis for

determining the causal structure and the computability of functional designs prior to the implementation

of physical designs that use Minimal Methods for organizing designs into structures that will promote

increased performance. In addition, we will also show how the proposed design and method can be

adapted to the computing infrastructure on which the applications run. The ISEM language contains most

of the UML
v
/SysML

vi
 methods plus others, but our focus will be on higher level organizing structures that

organize the system level, which will give us a more effective control of the architectural design‟s

structure.

Keywords: systems engineering foundations, emergent design, sign engineering, architectural design.

model-based design, domain specific language

Considerations in Architectural Domain Specific Language Design

Domain Specific Languages (DSL)
vii

 are gaining popularity but there is a high entry cost for

changing the way development is done when using a new approach if we must develop these

domain specific languages before we actually do any work to define the Design. The goal of

Integral Systems Engineering Language (ISEM) is to facilitate and simplify the application of

this type of design approach by providing a template for a textual DSL, which will be supported

by tools that every engineer already has. The use of textual rather than graphical tools for design

goes against the trend established by UML and SysML. Also, ISEM departs from software

mailto:kent@palmer.name
http://kentpalmer.info/

2

languages because it is not closed and context free, but instead is adaptable and changeable to the

particular process of the design as it is implemented by the Designer. The ISEM language

provides a grammar template by using a spreadsheet that can handle 90% of all necessary

grammatical constructions needed for defining static architectural structures. Most General

Purpose programming languages use complex syntax in order to represent the dynamics of

algorithms, which allows the interleaving of orthogonal language features. But design, especially

architectural design, deals mostly with the static structure of the system and normally does not

need this level of sophistication. As a result, it lacks the ability to represent any kind of structure

that one may wish to produce at the more detailed design level of a programming language.

Architectural structures are more narrowly scoped than the features that are now availabe for

different types of programming structures that are implemented at the level of software code.

We will call this Architectural Design „staticware‟ and we would like to represent it at the

conceptual level of the ultimate intent of the designer rather than in lower level constructs. Even

UML and SysML may be at a level of construct that is too low and too general for the purposes

of the Designer. What the Designer wants to do is to capture his intent within the design at a

level that more sophisticated users and stakeholders can understand. In addition, the Designer

may also want to blend this „staticware‟ with design constructs that are referred to here as

minimal design methods of the type that appear in UML and SysML. The Designer may also

want to use representations with different profiles that are difficult to represent within the

domain specific framework of UML and SysML. Textual DSLs can represent anything that can

be specified in language and in text. One merely creates an appropriate sublanguage that talks

about the given domain in a way that is commonly understood. One of the problems of UML and

SysML is their semantic weakness, but the ISEM language is designed to show multiple

connections between elements at the same time rather than merely using only two-point

connections with lines. ISEM also supports „knowledge capture‟ at the conceptual level at which

the Domain Specialist is thinking and this is subsequently augmented by the design concepts that

are taken down to the detail where software code can be written or generated. Knowledge

capture not only supports knowledge management but also supports Ontological Engineering

because, in the process of creating the Domain Specific language, the ontology of the domain is

recorded as well as the context and other dimensions of the problem, as well as solutions that

cannot be captured easily by general purpose design methods and languages.

ISEM language appears as a set template of columns in a spreadsheet. It comes populated

with general purpose DSLs that show the structure of the language statements in many examples.

But, the advantage of ISEM is that the Designer can not only make up his own statements that

will extend existing languages, but he can also create his own domain specific language when

using this template. This process has two steps because after the requirements development is

completed, then the Architectural Designer must begin to think about the specific domain

concepts that need to be represented in the design as well as the architectural concepts that could

be used to structure those concepts in the particular application that would implement the

requirements. The key to ISEM is the flexibility of the language template and the ubiquity of the

supporting tool that lowers the barrier for entry into this approach. The process of Architectural

Design could produce domain specific languages and extend existing design languages that

express minimal design methods. The Architect would use the statements at the Model Level to

produce Instance Level Designs for different parts of the system. These languages that form

ISEM can be mixed together as necessary and be added to new languages that express domain

concepts. They are expressed in text that is initially produced according to the grammar template

3

in the spreadsheet. However, the text could be exported into files and managed in configuration

management systems and manipulated by text editors. Spreadsheets would be the best way to

easily manage and manipulate the statements of the language because their use is quite natural

and also allows an analysis of the languages, the models, and the scripting that can manipulate

the models.

We are very interested in the fact that it is much easier for someone to make up their own

language than it is to learn the language of someone else‟s. This fact is exploited in ISEM where

there is freedom to make up Domain Specific Languages at will, and to change the syntax by

adding columns to the spreadsheet template. This means that the Designer is not hobbled by a

preexisting language that was created by someone else. The languages of ISEM are examples

that can be leveraged to see how the languages work, as well as how these languages should be

constructed on the form of the ISEM template. Also, they can be used as a „tool box‟ to suggest

the kinds of statements that might be needed for the design of realtime systems, while the

architects are free to make up their own languages and statements and to create identifiers for

instantiating existing statements. This means that the Architect can remain fluent and be in

complete control because of the overall understanding of the languages that he is using since he

has created them (for the most part) to satisfy the requirements of the domain that he is

addressing.

The Structure of ISEM

ISEM has been created to be as easy to read as possible. Each column in the spreadsheet has

a place for a particular grammatical lexical unit. Reflective language is the first language in

ISEM and it describes ISEM (itself) as well as all other ISEM languages. The second language in

ISEM is a representation of KM3
viii

 from the INIRA
ix

 ATLAS group that has simplified the

description of the models in all meta-levels beyond what is available from the OMG in UML

infrastructure as well as Meta-Object Facility (MOF), or Eclipse Ecore, or Object Constraint

Language (OCL). Using the KM3 language representation and the ISEM reflective language

allows all possible languages to be described regardless of their complexity and domain.

However, since we wish to advocate the use of the Gurevich Abstract State Machine (GASM)
x

Method and the Wisse Metapattern Methods
xi

, there are languages associated with these methods

as well as a State Machine Method that realize the same structures that are available for state

machines in UML. The Gurevich Method is a set of rules that allows computational systems to

be created from language constructs in any domain. The Wisse Method aids the creation of

contextual objects rather than normal object-oriented constructs of entities that are free of

context. Taken together, the Wisse and Gurevich methods complement each other as a way to

generate the structure of the system at a high level of abstraction. This makes it possible for one

to adapt this model to any level necessary in order to articulate the functional and causal

structure of the system so that it can be designed in a way that shows that it is computationally

viable. However, these models are not concerned with performance. It is only after the

introduction of performance issues that it becomes necessary to introduce design concepts for

separating and organizing the natural functions and hierarchies of the system. At that time we

would introduce other minimal design methods to augment the domain specific languages and

the state machines and rules that have been developed in the bridge models, and this will allow

us to connect between the requirements and the performance architecture of the design. If there

4

were not performance issues or cross-cutting concerns, or a need for object inheritance, then we

could merely continue to elaborate the GASM model until we had a running simulation of the

system under design. But, for practical purposes we only elaborate the GASM model until it is

clear that the functional and causal structure is coherent, and then, at some point, we could

transition to performance oriented Architectural Design, which is at a higher level than Detailed

Design. However, it is important to note that in this transition the very models that we have used

to articulate the system (up to this point) can continue to be elaborated with performance

oriented changes. Furthermore, if it is refined properly, architectural design can serve as the basis

for various levels of code generation as long as it is properly augmented by minimal design

method extensions. The real promise of a DSL approach is that it allows the various model meta-

levels to be used as a basis for code generation, while at the same time capturing knowledge at

each level of the design.

The original ISEM had a real-time software orientation and had a complete set of minimal

methods that were necessary for producing real-time systems. This was created prior to the

introduction of UML. The new ISEM is slated to borrow from UML wherever there is an

established standard. But it still represents the same set of minimal methods that are necessary

for real-time design and departs from UML wherever it is necessary to extend the language to

make it work more efficiently for real-time designs. UML existing profiles have the necessary

features for the design of many different kinds of systems and there is no reason to introduce

unnecessary disparate terminology now that a standard exists. But, the UML profiles that exist

are limited in their expressiveness and they do not have all the profiles we would like to have for

supporting real-time design completely. However, the thrust of the new language is not in the

area of minimal design methods, but rather at an architectural level where new concepts of a

higher order than UML and SysML are being introduced. That is where the genuine novelty of

the new ISEM language lies because it introduces a combination between the Ossher GRID
xii

and the Lano N2
xiii

 methods, which allows it to fully flesh out the architectural design level of

the ISEM languages. The first version of ISEM used Ossher‟s GRID in a four-dimensional form

to produce a model of architecture that could bring together all the various minimal design

methods to describe an architectural component. But the new ISEM language elaborates on this

level of abstraction that contributes to developing a way of expressing Emergent Architectural

Design.

The Basis of ISEM

The author recently completed a Ph.D. research project that developed the concept of

Schemas Theory while studying the foundations of Systems Engineering. Schemas Theory

provides a basis for understanding the nature of the Emergent System and Meta-system

(Operational Environment) Design, and it is on the basis of this research that we now return to

the definition of the ISEM language so that we can express (in a fundamental way) the

representations necessary to capture an emergent architectural design. ISEM can capture these

representations because it allows the Designer the greatest possible freedom to create new

statements in any language and to create new languages that can express the design intent of the

System Architect at the highest conceptual levels. We base our method on Wittgenstein‟s

Tractatus
xiv

, which defines the basis for how we may allow any fact about the design to be

5

captured either with an existing statement or a newly coined statement. The Designer can even

change the grammatical template of the languages as he sees fit by adding columns to the

spreadsheet and labeling them, which then enables him to use that new grammatical feature. So,

neither methods nor tools will hinder the creative designer from creating the most accurate and

domain specific model of the system. Because the language template is simple and because it is a

combination of operator/operand and Subject/Verb/Object it can style the expression of intent

within the framework of the language template in a straightforward and flexible way. „Define‟

statements create the ontology of the application and „Posit‟ statements relate those ontological

statements to each other not only in inheritance or ownership hierarchies, but in all other ways

that might be needed to express what is necessary within the design. Lemmas and Operations can

be added as necessary to produce dynamic representations of the system. All four meta-levels of

the model structure can be easily expressed using KM3 languages. However, the spreadsheet

template grammar expresses the meta-model
xv

 while the statements‟ generic tokens for

identifiers express the generic model level. When identifiers are added they express the terminal

model or the instance model level. KM3 would be used to describe the meta-meta-model of the

system. KM3, which is a self-reflexive meta-meta-model, is unlikely to change for any reason

because it expresses the most fundamental ontological constructs such as the definition of

entities and relationships. The grammar of the ISEM template could be changed occasionally,

but this should be done only after a great deal of consideration. The actual models expressed in

that grammar could be completely reworked, if not reinvented, as well as new languages added

during the design process. The Designer does not have to stick with the statements as presented

in the language. Any statement could be changed easily to suit the designer‟s style of expression.

Of course, these changes should be coordinated and filtered when there is a team involved in the

design. Design teams should use statements of the same style to avoid confusion, although this is

like any style guide. As soon as a language is changed, then the consistency and completeness, as

well as the well-formedness (clarity) of the language, becomes subject to analysis, which will

confirm the correctness of the language. Unlike languages that are parsed, it may be that the

Designer will allow the language to remain para-complete, para-consistent (See Graham

Priest
xvi

), or para-clear. In other words, keeping the language consistent, complete, and clear may

be a second priority to the actual representation of the design in the heat of the moment.

However, if the language itself is complete, consistent, and clear, then that assures the quality of

the terminal or instance models that are created from the statements in the generic model. If the

generic models are allowed to become incomplete, inconsistent, or not-well-formed, then some

sort of model transformation will be necessary. However, if the Designer is consistent in his use

of the new statements that he invents, then much of that work can be done by „search and

replace‟ within the spreadsheet. It is fairly easy to rework the model so that it is complete and

consistent (again) and that well-formedness is taken care of by the spreadsheet format. The

advantage of ISEM lies in the fact that the Designer can make up new statements on the fly as he

needs them without generating a parser or doing model checking and this will enable him to

capture the design concept in a more effective and expeditious manner. After the design capture

has been done, then the Designer can devote himself to making the final product more complete

and consistent after the fact when it matters most. In this process the Designer becomes his own

Methodologist and is also freed to express the central concepts of any domain as he understands

them and in a manner that others can also understand. This is because there are no unnecessary

syntactical encumbrances such as those that appear in pre-created languages. The spreadsheet

makes it easy to create all sorts of concordances of the language and to search for language

6

sentences to express what needs to be expressed, although, if you don‟t find them quickly you

have the option of creating something on the spot and need not worry about placing it in a

normative form until later. Since the language mimics simple English (or the operator/operand

structure) it is easy for the Designer to make up simple and understandable statements that

express exactly what he wants to express. He can worry about reconciling these various

statements‟ styles that capture the same intent later. However, even though the statement

structure is not very important, using the same identifiers for the same thing is very important.

Search facilities and concordance facilities (provided by the spreadsheet) can give some

guidance as well.

For Systems Engineering, this new approach using ISEM should simplify the life of the

System Engineer. Now he can write textual explanations of processes that are difficult to

manage. Just as we learned to use single axiomatic sentences for requirements, we must now

learn to use DSLs to express the Emergent Architectural Designs that we create in order to

reflect those requirements in the implementable system design. Of course, we should still have

textual descriptions like the Operations Concept (OpsCon)
xvii

 and specifications that are

explanatory, but the base design representation needs to be expressed in textual DSLs texts

instead of natural written language documents and these would be easy to control with textually

oriented configuration control systems. And, they will help us to do estimates in the future

because it will give Systems Engineering the equivalent of a line of code (SLOC)
xviii

 for the

purpose of measuring the productivity of our systems design. Because the tool that is being used

is actually a spreadsheet, it is already readily available to every systems engineer who has a basic

computer desktop set up with Open Office or MS Office. We can now track how long it will take

to create a generic DSL, or to produce a terminal, or an instance model by using a DSL generic

model.

The Meta Core Sub-language

The first „META Core language‟ would be a reflective language derived from a template for

language syntax. This reflective language will make it possible to have a meta-language about

any language that one creates within this template structure. It deals with the parsing of the

language and its structure, which is composed of meta-information, instructions, and a

grammatical SVO (Subject Verb Object) template. The structure can be parsed into a tree of

terminal and non-terminal symbols that can be turned into an abstract syntax tree of operators

and operands. The language allows the speciation of the sequence of terms in the language as it

appears in the headers of the spreadsheet. This meta-language called “META Core language” is

distinguished from the “META KM3 language” that allows the description of all models at

whatever meta-level. KM3 is a simpler version of what appears in the UML infrastructure and

the Meta Object Facility (MOF)
xix

. There are hierarchies of both meta-languages and meta-

models and they are different from each other. One is the representation and the other is the

conceptual structure that is being represented. Both have a series of meta-levels that are parallel

to each other. The META Core language is just one representation. There may be many

representations of design concepts, for example, graphical representations in UML. It is

interesting that programming is textual but design tools have become graphical. The problem

with this is that the graphical languages such as UML and SysML are semantically weak. Even

though ISEM is very simple, it is still much stronger semantically because it can have statements

7

that relate multiple objects with each other at the same time. ISEM is also represented in

simplified English and it is readily understandable. There is nothing to stop someone from

creating a graphical representation that mimics the domain specific languages that are created.

The problem is that this step is complicated and difficult to do as a prerequisite to creating the

design. The problem with UML and SysML is that they already exist as tools, yet, they are

generic (like generic programming languages) and thus are difficult to extend for the purpose of

producing domain specific profiles. Here we are trying to achieve a first step that will allow

anyone to create DSLs with the tools they already have and thus derive the benefit quickly so

that they can see if it is worthwhile to produce parsers for their own DSLs, or new Profiles for

UML, or other types of more complex approaches to using DSLs in development. In other

words, using ISEM does not preclude the later use of more complex implementations of Model

Driven Design and Domain Driven Design
xx

 using Domain Specific Languages, but it offers a

first step where the value of the DSL can be proven to the Systems Engineers and Software

Engineers concerned with Design. We especially want a tool that is easy to use so that we can

facilitate the Emergent Designs of new and innovative systems that will not get in the way of the

design process itself or require retooling in order to reap the benefits of Model Based Design and

Domain Specific Language development and use.

Diagrams and Models

Much design today is done through using Powerpoint slides or Visio diagrams. These

diagrams are semantically weak because they only indicate what is being said by the person who

developed them for presentation, and they only retain their meaning as long as that person is

around to explain the diagrams. If, on the other hand, we take these “Powerpoint engineering”

diagrams and produce a domain specific language that explains what their objects and lines mean

then we will have captured a shared and transferable knowledge in a reusable medium. It is

quite interesting that from the time of Euclid
xxi

 our tradition has relied on diagrams and text for

the construction of proofs and that even today this is fundamental to engineering. Look at any

specification and you will see text, diagrams, and tables for the most part. But there is no meta-

information that structures the meaning of the elements in the text, diagrams, and tables. Thus,

these descriptions have no models behind them but only have a surface description, which we

rely upon to describe and explain the system. Without the models there are no proofs, i.e., no

closure to the descriptions and explanations. Having models allows us to prove properties about

the design such as their consistency, completeness, and clarity, which are the properties of all

formal systems. If a model is para-consistent, para-complete, or para-clear then we can do

analysis to find out where the gaps in the model lie. This is not possible when there is merely a

surface representation by text, diagrams, and tables with no models behind them.

In the geometry of Euclid there is a parallel between the diagram and the statements of the

proof. This parallelism allows the analyst to see that the relationship between the two is

isomorphic and closed, which allows the proof to be conclusive. Models offer this possibility for

engineering systems. If we had models that are traced to our requirements behind our

specifications, then we could use those models to connect things that appear in diagrams, texts,

and tables within our specifications. Models are simple to create if we use an approach like

ISEM, although it is difficult to confirm their proprieties by analysis. However, in normal

engineering systems we do not prove the properties of designs but merely trust the due diligence

8

of the Designer. It is important to understand that the model only has the properties of a formal

system, i.e., consistency, completeness, and clarity. These are the properties that appear between

the Aspects of Presence, Identity, and Truth. It is only when we add the Aspect of Reality that we

get the crucial aspects of verifiability, validity, and coherence. Verifiability is the relationship

that the model has to the requirements. Validity represents the relationship between the model

and the context of use. Coherence is the internal synergy and integrity of the model that is

achieved when we add a model behind the surface presentation of a system design

representation. For example, it is possible to pose questions about the design model that

underlies the representation when we use an MS Powerpoint slide diagram that has been

annotated with the modeling statements in a DSL. The Powerpoint diagram cannot answer our

questions, only the Designer can satisfy our queries, particularly if the slide is not annotated. As

Peter Naur
xxii

 points out, no amount of documentation can capture what the Designer has in

mind, but a model can serve as a representation of the knowledge that his diagrams and pictures

do not capture. We can ask if the model is complete and consistent with itself, and if it conforms

to the well-formedness rules of the representational medium. We can also compare the terminal

or instance statements of the DSL and view them as „taken together‟ or as a synthesis of the

requirements in the actual context of use. This is easy if the language can be understood as a

stakeholder that generates the requirements as „needs‟ or „wants‟, and if the end users in the

operational environment can also understand the requirements and how their operationalization

of the system can be used in its final place of deployment where it will be used as a tool to help

them accomplish their goal. By triangulating the requirements through verification and the

operational environment through validation, we can discover the coherence of the model, which

is a deeper property the model has within itself because it signifies its synergy, integrity, and

poise toward the environment beyond its own synthesis. Without the model it is impossible to

query surface representations concerning these properties because the surface representations

cannot be shown as closed. Without the model we are assuming that the conceptual model is in

the designer‟s mind. The model allows us to visualize the Designer‟s conceptual representation

of the model. This allows others to look at the model and to analyze it. Furthermore, the model

can become a vehicle for the individual to capture and communicate his tacit knowledge, which

is informing the design indirectly. By creating a model we can represent knowledge directly and

then use that knowledge to test the coherence, validity, and verifiability of the surface

representations of the design.

Picture, Plan, and Model

In my dissertation I discuss the sub-schemas of Picture, Plan, and Model, which are projected

as precursors of the Whole Form that is being designed. The diagrams that appear in Powerpoint

designs are pictures. They are normally global pictures of the parts of the design, or they may be

pictures of the different parts of the design. In order to produce a model one must first have a

plan. The plan (like a blueprint) shows the object under design from different viewpoints with

the various features measured and augmented by notations. The plan allows us to know what

would be repeated in different dimensions to produce the model. The model is usually an abstract

representation of the whole system in miniature, sometimes with certain details omitted, or in

some cases, as a yet non-working configuration that abstracts from the complete functioning of

the final synthetic system implementation. We are advocating that we should use the ISEM

9

language to produce plans and models that would stand behind our diagrammatic representations

with the same integrity as the statements expressed in a Euclidian Proof (that are isomorphic to

the diagram of the proof). To produce the plan we must construct a series of models, meta-

models, and meta
2
-models that form the basis for the representation of the terminal or instance

model. A series such as this can define what will be repeated in the representation and can be

used to build up the terminal or instance model. It defines the ontology of the domain by

specifying the possible categories and elements that can appear in the model. Then, a series of

meta-models will describe what kinds of relationships that these ontological elements can have

with each other. These are stated in a restricted English formalism. They are posited relationships

between ontological elements identified through definition statements. These posited relationship

statements can relate the elements to each other in order to make sense within the domain.

Beyond these two basic statements we can also have Lemmas and Proof type statements.

Lemmas are steps toward proofs; they include the relationships between statements that establish

deeper structures in the modeling system. Of course, we would like to prove our designs and that

is (for the most part) a distant goal. But, at this point, what we can do is to build up Lemmas in

order to strive for a kind of closure that would allow proofs to be written about the system. We

should think of the system as a synthesis, and if that synthesis is completely closed, i.e., a convex

solution, then that is what we will ultimately strive for in our models of the system. We are in a

design process that posits synthesis and works toward it. We move back and forth between the

analysis of the model and its representations, as well as the further elaboration of the synthesis

that we are projecting on the design. Charles Peirce
xxiii

 calls this property of the synthesis a

“Third” because it has the assumed continuity of the design as a whole system. The individual

objects and their relationships are the “Firsts” (Isolata) and the “Seconds” (Relata) in the

terminology of Peirce
xxiv

. Peirce makes a very interesting point that is not normally understood,

which is, that there is a difference between the precision of analysis and what he calls the

precission of the synthesis
xxv

. Precission, with two „ss‟ means that we are not taking the system

synthesis apart, but we are articulating the various aspects of the synthesis when it is still

operative. When we produce models we need to oscillate between the precision of Analysis and

the precission of Synthesis as we approach the limit of the „system synthesis closure‟ that we

want to achieve in the design. But, if we do not have a model representation of the design, this

task is very difficult to perform. What we want is a representation that will give us the most

direct access as possible, and that is what ISEM attempts to give: a representation where the

structure of the syntax is as simple as possible and a representation where the formal language

is as direct as possible so that we can oscillate between the precision of Analysis that

deconstructs the parts of the system and the precission of Synthesis that works backwards from

the posited synthesis. A representation such as this will give clarity and soundness to the design

and will facilitate the shared vision of the design team. We want reviewable documents that will

represent the model of the design and capture the knowledge of the system at the level of the

intention of the users and stakeholders of the design. In other words, domain experts should be

able to read the representation and understand it without being hampered by the clutter of the

syntax of computer languages. It should represent the concepts they are working with and not

some transformation of those concepts into another language or representation that is familiar

only to the system architect and the software engineers. ISEM allows this oscillation between the

decomposition of analysis through precision and the articulation of the projected design

Synthesis by precission. The design synthesis we are projecting, which is emergent, is our vision

of how to build a system so that it actually works as intended for the customer and end user. This

10

demand causes us to create new statements in our generic design model languages and domain

specific languages. It may also drive us to create new languages to capture other views of the

system that are either domain specific or necessary due to the technological infrastructure we are

using to realize the system. The languages that represent the models themselves are syntheses at

a higher level of abstraction in the knowledge domains that support the specific system design.

Many times these knowledge domains remain tacit within the kinds of specifications we

normally use to describe the systems that we build. ISEM type modeling languages attempt to

make these modeling domains explicit and thus can be a means for capturing our own knowledge

about various domains, or for communicating that knowledge to others in a concise form. It is a

way for us to collect our own knowledge of design and to develop our own architectural styles.

Designers could produce their own languages with a language design that supports their own

knowledge, styles, and approaches toward their design. ISEM is merely one example that shows

the feasibility and efficacy of such a simple and direct approach to Model Based Engineering and

Domain Engineering that includes an example version of Domain Specific Languages tailored

for architectural design. Every language could be omitted, tailored, and recreated as the Designer

(acting as domain engineer) saw fit. The high entry costs of designing parsers or graphical tools

for our domain specific languages are not necessary. We can benefit from Domain Specific

Languages in these Model Based Designs quickly and efficiently by using the tools we already

have in a new way. This allows us to experiment and prove our concepts before we invest in

expensive tooling that we may not use, as well as avoiding the wasted time and energy spent on

an approach that has been developed in a traditional manner that uses only the surface

representations of our designs. The promise of model based design will give us the opportunity

to use these models to generate products from our design, such as code. Eventually we want our

models to become the center of the system rather than an appendage to the system. As long as

the code or the material implementation of the system is the center focus, then we are stuck

producing documentation that may never be used or could possibly be wrong. However, if we

eventually generate the code or material implementation from the model, then we will continue

to update the models because they will become the center of the system implementation rather

than an unnecessary supplement.

The Importance of Parsers

When we finally arrive at a point in time when there will be a parsed language for the ISEM

DSLs, we expect that the Domain Specific Languages will have become somewhat standardized

so that new parsers only need to be introduced for handling new statements that are added by the

Designer rather than building new parsers for every variation of the languages. Presently, parsing

is deferred in these DSLs because our adherence to „parser restrictions‟ limits the creative

expression of the Designer. Rather, the emphasis is on maximal expressibility at the point where

the Emergent Architectural Design is being visualized and synthesized. At that point we want to

have a platform of a language template that we can use, although we want maximum resilience,

adaptability, and flexibility in our mode of expression so that we can simultaneously be

developing the representation for the design and the design itself. Our language does not have to

be able to express everything from the very beginning as programming languages do. Rather

than having a closed and context free language, we want an open and „context sensitive‟

language for our first attempts at capturing the emergent synthesis of the design. Later, once we

11

have a sketch of the design at some level of abstraction, then we will be able to fill in that

synthesis through an analysis of the language extensions or new domain languages that we have

created in the process. At a later stage we will want to formalize the languages that we are using

and tighten them up by improving their formal properties. At that time we can refactor our

designs based on a higher formalism and introduce models whose representations can be parsed

and whose conceptual systems have the necessary formal properties we desire. Thus, we are

advocating that we allow for para-consistency, para-completeness, and para-clarity in our

languages and models during the first part of the design process as we create an infrastructure

that supports the design and develops along with the superstructure of the design itself. This will

allow the architectural design representations and models to be fully emergent.

As a model based engineering approach, ISEM embodies the technologically simplest

possible way that an entire hierarchical structure of meta-models and language representations

can be easily understood and easily manipulated. There are many complex standards in this area,

but these complex standards get in the way of understanding the fundamental ideas behind

Model Based Engineering and Domain Specific Languages. With ISEM, it is possible to see a

modest yet fully integrated approach to Model Based Engineering with DSLs. It uses tools that

everyone who operates within desktop environments will understand. It does not require any

special tools that cost money beyond the bare minimum that has already been spent to support

engineering work. It allows products to be produced that can be reviewed, shared, and

configuration managed. The models can be incorporated into standard engineering products such

as specifications and operational concept documents. It does not use any unreadable syntax such

as XML as its basis, but can easily be transformed into XML if necessary to interface with other

established or future representational tools. Model transformations could be used to move the

designs that are in ISEM into other tools. Thus, designers can produce products on a small scale

and then transform them into a larger representational environment as necessary. There are also

other textual representations of models being developed, for example, Xtext
xxvi

 is part of Eclipse

and could be used interchangeably with ISEM or as a transformation of ISEM. The parsing and

transformation of ISEM into other graphical or textual representations is always possible. Having

a parser for ISEM is not crucial because it can easily be built with ANTLR
xxvii

 and other parser

generation systems if necessary. It can also be embedded in extendable languages such as M,

Converge
xxviii

, or PI
xxix

. When we first attempt to capture the Emergent Architectural Design it is

more important to maximize flexibility, adaptability, and resilience while the vision is still fresh.

First, we may write down a description of the system design as a brief sketch. We could make

drawings on the back of envelope (or on a quadpad). But then, as we articulate and solidify that

design, we may want to describe it more formally in simple English by using statements that

capture what we know at the time. ISEM is designed so that the various facts that you know

about the design can be captured in a statement. For this reason ISEM has more statements that

are absolutely necessary because it has statements that will allow each entity and each

relationship to be captured independently. For instance, if we only know that one state exists we

should be able to write that down, or if we only know that there is a relationship between two

states we should be able to capture that also. But eventually we may want to move toward a more

concise representation where there is a single statement for each state vector in the system. ISEM

allows you to discover the nature of the design as it emerges and then to consolidate the various

features of the design as more information is gathered that allows the designers to make that

consolidation. It allows you to create new statements or whole languages for capturing the novel

and emergent qualities of the design. It is this simple extensibility of ISEM that makes it

12

valuable as the first responder in the design process. It takes the designer‟s knowledge and makes

it more concrete and applicable to the design as it emerges. And we know that the process of

writing allows us to discover new ideas and expand upon our design paradigms as we design.

This then allows us to apply analysis and synthesis to the representations that are created in

ISEM as well as to consolidate what we have learned in the emergent process of creating the first

architectural design model. Most designers study methods, languages, tools, and other

applications in order to form ideas about how things can be designed. Instead, we engineers tend

to make up things as we go along when we are engaged in the design process and we use

methods and tools in an ad hoc fashion, first, by doing everything by hand (possibly on quadpads

or on pieces of paper). We then take these thoughts and ideas and refine their sketches until we

have something workable and this is the point when ISEM proves to be very useful. ISEM allows

these sketches to be captured in the first formalism so that consistency and completeness checks

can be done early on the sketches.

Terminal or instance models may only use a small part of the available language but they are

only as complex as the system that is being designed. As the design progresses we could reduce

the number of statements that are being used to express a feature of the design. For example, we

could replace separate statements about states and transitions and functions with singles

statements about state vectors. So, there is some expectation that there would be consolidation of

the instance or terminal model as the design progresses. Also, there would be an analysis of the

completeness and consistency of the design concept that the terminal model is expressing and

this analysis could be folded back into the ISEM representation. As a result, the design

description would improve over time and would provide a good departure point for the next

iteration of the design process. When we begin to sense that our design is sound enough to share,

we can then create diagrams and charts to share with others using the standard tools. But, behind

those diagrams and charts you will have the support of the ISEM representations that formalized

and captured the knowledge that is contained in them. Eventually we may want to use a tool that

is standard for large scale design representations within our engineering environment. If that is

the case we can then transfer what has been semi-formally captured in ISEM into that particular

tool either by writing a parser and transformation tool in order to use the text, or by manually re-

entering the information into an alternative representational format. Those tools normally have a

frozen formalism that must be adapted to in order to use them and they may not capture all the

aspects of the design that came out during the design process. So, a case can be made that even if

you are going to use UML or SysML to capture the generic parts of the design, you may still

want to use ISEM to capture technical details or domain specific features that those tools do not

support beyond the traditional methods that we have become accustomed to. Even if you were to

develop your own UML profile you may still wish to try out ideas that may express how that

profile should be structured before you spend the money to build the new profile for the UML or

SysML tool you are using.

Changes to the Languages

As a language for software systems architectural design, I think ISEM has value. So the point

of this research is to bring the language up to date with the latest research on Model Based

Design and Domain Specific Languages. Now that standards exist in this area there is no reason

for not using those standards as the basis of the language as long as the standards are not so

13

complex that they obscure the fundamental ideas being expressed. For example, I was lucky to

find KM3 as a basis for meta-model description because the transformation of the UML

infrastructure and the MOF was a daunting task. Fortunately, that complexity was not needed. I

now begin with the reflexivity of the language as my starting point so that all the languages that

are written in ISEM are reflective
xxx

. One really only needs a reflexive language definition and

the KM3 representation in order to be able to start creating one‟s own languages as an

alternative. This was a useful learning task and a worthwhile „knowledge capture exercise‟. As

we try to create model languages we begin to understand how much we know about the minimal

methods that they employ. It is one thing to have a general idea of how these methods work and

another to have a complete consistent representation of the minimal methods. The minimal

method languages will produce a model that can be used as a basis for building other languages

in other domains using standard domain engineering techniques.

Ultimately, applying ISEM to a problem will provide us with a methodological

representation of the projected design that will more inclusively represent the „problem domain‟

where other solutions can also be represented. This allows us to have a basis for exploring the

design landscape within the design process. ISEM supports the possibility of sketching many

different designs within a problem space and then allows us to compare them in order to find the

best option. Exploration of design landscapes is difficult because representations are difficult to

change. ISEM allows you to pick your level of abstraction and then work variations (as

necessary) to explore the design language by merely copying a given design fragment and then

changing it. By producing several different design fragments at some level of abstraction, then

one can do concrete trade-offs between them because the essential differences are represented

explicitly in the various design fragments. ISEM models can also be used as a basis for

simulation. It is a representation that can be read as a configuration file by a hand-built simulator

to actually test the dynamics of the proposed architectural decision. If the modeling system takes

on another form of representation in order to drive the simulation, then model transformation

techniques could be used to make that transformation between different representations

demanded by the simulators. But, of course, if one is building a simulation oneself then it can be

tailored to ISEM and the languages that one has built within ISEM. ISEM has been created so it

can be easily parsed. Identifiers always come directly after their entity type. Also, ISEM is a

simple language and it is only necessary to parse the small part of ISEM that is actually used.

Parsing techniques are well understood, but model based design and DSLs are new concepts that

can provide a simple means for systems and software engineers to use in order to see what they

can do to improve the efficacy of the design process itself. The enforcement of the language can

be added quite easily by anyone who desires to have their version of ISEM enforced. Yet,

enforcement of any given variation of ISEM could be a difficult problem when faced with

extending the language or creating new languages without parser support. We assume that

languages such as M from Microsoft Research
xxxi

 that are part of OSLO
xxxii

 as well as MS SQL

server and other academic languages like Converge and PI will eventually support an easier

incorporation of textual DSLs. So, we will allow that research to mature while we work on

improving the base language. We would like to see an open source version of M, which is itself

an open language that incorporates most of the features we need and ISEM can be augmented

with OCL
xxxiii

 or Eclipse Ecore
xxxiv

, which would also ease the constraints on its use.

14

References on Model Based Design and Domain Specific Languages

Backhouse, Kevin. Abstract Interpretation of Domain-Specific Embedded Languages. , 2002.

Balasubramanian, Krishnakumar. Model-driven Engineering of Component-Based Distributed, Real-Time and

Embedded Systems. , 2007.

 rger Egon and Robert F. St rk. Abstract State Machines: A Method for High-Level System Design and

Analysis. New York: Springer, 200

 ostr m ontus. Formal Design and Verification of Systems Using Domain-Specific Languages. Turku: Turku

Centre for Computer Science, 2008

Czarnecki, Krzysztof, and Ulrich Eisenecker. Generative Programming: Methods, Tools, and Applications. Boston:

Addison Wesley, 2000.

Domain-specific Languages: Proceedings. Berlin: Springer, 2009.

Dykman, Nathan. Utmf: An Agile Approach to Domain Specific Modeling Languages. , 2010

Eco, Umberto, and Thomas A. Sebeok. The Sign of Three: Dupin, Holmes, Peirce. Bloomington: Indiana University

Press, 1983.

Evans, Eric. Domain-driven Design: Tackling Complexity in the Heart of Software. Boston: Addison-Wesley, 2004.

Fowler, Martin. Domain-specific Languages. Upper Saddle River, NJ: Addison-Wesley, 2011.

Friedenthal, Sanford, Alan Moore, and Rick Steiner. A Practical Guide to Sysml: Systems Model Language.

Burlington, Mass: Elsevier/Morgan Kaufmann, 2008

Ghosh, Debasish. Dsls in Action. Greenwich, Conn: Manning, 2010

Giese, Holger. Model-based Engineering of Embedded Real-Time Systems: International Dagstuhl Workshop,

Dagstuhl Castle, Germany, November 4-9, 2007 : Revised Selected Papers. Berlin: Springer, 2010

Grant, Emanuel S. Defining Domain-Specific Object-Oriented Modeling Languages As Uml Profiles. , 2002

Gronback, Richard C. Eclipse Modeling Project: A Domain-Specific Language (dsl) Toolkit. Indianapolis, Ind:

Addison Wesley Professional, 2009.

Gurevich, Y. "The Abstract State Machine Paradigm: What Is in and What Is Out." Lecture Notes in Computer

Science. (2002): 24.

Kelly, Steven, and Juha-Pekka Tolvanen. Domain-specific Modeling: Enabling Full Code Generation. Hoboken,

N.J: Wiley-Interscience, 2008.

Kerzhner, Aleksandr A. Using Domain Specific Languages to Capture Design Knowledge for Model-Based Systems

Engineering. Atlanta, Ga: Georgia Institute of Technology, 2009.

Kleppe, Anneke G. Software Language Engineering: Creating Domain-Specific Languages Using Metamodels.

Upper Saddle River, NJ: Addison-Wesley, 2009.

Knopf, Markus, and Sally S. Slish. Domain Specific Languages. , 2001.

Lauder, M, S Rose, A Schurr, and M Schlereth. "Model-driven Systems Engineering: State-of-the-Art and Research

Challenges." Bulletin of the Polish Academy of Sciences: Technical Sciences. 58.3 (2010): 409-421

Mernik, Marjan, Jan Heering, and Anthony M. Sloane. "When and How to Develop Domain-Specific Languages."

Report / Software Engineering. 309 (2003).

Metry, Alex. Validating Internal Domain Specific Languages. , 2009.

Model Driven Engineering for Distributed Real-Time Systems. Hoboken, NJ: John Wiley & Sons, 201

Nicolescu, G, and Pieter J. Mosterman. Model-based Design for Embedded Systems. Boca Raton, FL: CRC Press,

2010.

Parr, Terence. Language Implementation Patterns: Techniques for Implementing Domain-Specific Languages.

Lewisville, Tex: Pragmatic Bookshelf, 20

Parr, Terence. The Definitive Antlr Reference: Building Domain-Specific Languages. Raleigh, N. Car: Pragmatic,

2007.

Petriu, Dorina C, Nicolas Rouquette, and ystein Haugen. : Model Driven Engineering Languages and Systems;

Model Driven Engineering Languages and Systems; Models 2010. Berlin; Springer; c2010, 2010

Priest, Graham, Richard Sylvan, Jean Norman, and A I. Arruda. araconsistent ogic Essays on the Inconsistent.

M nchen hilosophia

Priest, Graham. An Introduction to Non-Classical Logic: From If to Is. Cambridge: Cambridge University Press,

2008

Roberts, Maxwell J. Integrating the Mind: Domain General Versus Domain Specific Prosesses in Higher Cognition.

Hove: Psychology press, 2007.

R ssler Wolfgang. Model Driven Engineering for Safety Relevant Embedded Systems Model ased Code

15

Generation for Automation Systems. Saarbr cken VDM Verlag Dr. M ller

Sch rr Andreas. Model Driven Engineering anguages and Systems th International Conference roceedings.

Berlin: Springer, 2009

Sheard, Tim, Zine-el-abidine Benaissa, and Emir Pasalic. Domain Specific Language Construction Technology. Ft.

Belvoir: Defense Technical Information Center, 2000

Soule aul. Autonomics Development A Domain-Specific Aspect anguage Approach. asel irkh user .

Stahl Thomas and Markus V lter. Model-driven Software Development: Technology, Engineering, Management.

Chichester, England: John Wiley, 2006.

T h Walid M. Domain Specific anguages Ifip Tc Working Conference roceedings. erlin Springer .

Tairas, Robert, Marjan Mernik, and Jeffrey G. Gray. "Using Ontologies in the Domain Analysis of Domain-Specific

Languages." Models in Software Engineering. (2009): 332-342.

Tratt, L. "Domain Specific Language Implementation Via Compile-Time Meta-Programming." Acm Transactions

on Programming Languages and Systems. 30.6 (2008

Walter, T, and J Ebert. "Combining Dsls and Ontologies Using Metamodel Integration." (2009).

Widen, Tanya. Formal Language Design in the Context of Domain Engineering. Ft. Belvoir: Defense Technical

Information Center, 2000.

Wijngaarden, A . Orthogonal Design and Description of a Formal Language. Amsterdam: Stichting Mathematisch

Centrum, 1972

Wisse, Pieter. Metapattern: Context and Time in Information Models. Boston: Addison-Wesley, 2001

Wisse, Pieter. Semiosis & Sign Exchange: Design for a Subjective Situationism, Including Conceptual Grounds

of Business Information Modeling. Voorburg: Information Dynamics, 2002.

Yang, Zhihui. A Domain-Specific Modeling Approach for Component-Based Software Development. Muncie, Ind:

Ball State University, 2009

Zschaler, S, D.S Kolovos, N Drivalos, R.F Paige, and A Rashid. "Domain-specific Metamodelling Languages for

Software Language Engineering." (2010)

Biography

Kent Palmer has been a Systems Engineer and Software Engineer at a number of Aerospace companies.

But he also has done research in Systems Theory, and Ontology over the years and formulated a theory

called „Special Systems Theory‟ that combines Reflexivity, Autopoiesis, and Dissipative Ordering of

Structures in far from equilibrium conditions. He has just completed his Ph.D. in Systems Engineering at

the University of South Australia, Defence and Systems Institute (DASI) with a dissertation on Emergent

Design. Previous Ph.D. was in Sociology on Philosophy of Science at the London School of Economics,

University of London with the title The Structure of Theoretical Systems in relation to Emergence.

i
 Dissertation of author at http://emergentdesign.net

ii
 See Wild Software Meta-systems by the author at http://works.bepress.com/kent_palmer

iii
 Pieter Wisse: http://www.informationdynamics.nl/pwisse/

iv
 GASM http://www.eecs.umich.edu/gasm/

v
 http://en.wikipedia.org/wiki/Unified_Modeling_Language

vi
 http://www.sysml.org/ or http://en.wikipedia.org/wiki/Systems_Modeling_Language

vii
 http://en.wikipedia.org/wiki/Domain-specific_language

viii
 http://en.wikipedia.org/wiki/KM3

ix
 http://en.wikipedia.org/wiki/INRIA

x
 GASM invented by http://research.microsoft.com/en-us/um/people/gurevich/ See also Egon Boerger

http://www.di.unipi.it/~boerger/
xi
 Wisse, Pieter: Metapattern: context and time in information models (Addison-Wesley, 2001)

http://www.informationdynamics.nl/knitbits/htm/primer.htm
xii

 Harold Ossher http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/o/Ossher:Harold.html
xiii

 http://systemengineering-lanomethodologies.com See also http://en.wikipedia.org/wiki/N2_chart
xiv

 See http://www.kfs.org/~jonathan/witt/tlph.html

http://emergentdesign.net/
http://works.bepress.com/kent_palmer
http://www.informationdynamics.nl/pwisse/
http://www.eecs.umich.edu/gasm/
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://www.sysml.org/
http://en.wikipedia.org/wiki/Systems_Modeling_Language
http://en.wikipedia.org/wiki/Domain-specific_language
http://en.wikipedia.org/wiki/KM3
http://en.wikipedia.org/wiki/INRIA
http://research.microsoft.com/en-us/um/people/gurevich/
http://www.di.unipi.it/~boerger/
http://www.informationdynamics.nl/knitbits/htm/primer.htm
http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/o/Ossher:Harold.html
http://systemengineering-lanomethodologies.com/
http://www.kfs.org/~jonathan/witt/tlph.html

16

xv

http://en.wikipedia.org/wiki/Metamodeling

xvi
 Graham Priest: http://en.wikipedia.org/wiki/Graham_Priest

xvii
 http://en.wikipedia.org/wiki/Concept_of_Operations

xviii
 http://en.wikipedia.org/wiki/Source_lines_of_code

xix
 http://www.omg.org/mof/ http://en.wikipedia.org/wiki/Meta-Object_Facility

xx
 http://domaindrivendesign.org/ http://en.wikipedia.org/wiki/Domain-driven_design

xxi
 Euclid http://en.wikipedia.org/wiki/Euclid

xxii
 Peter Naur: See http://en.wikipedia.org/wiki/Peter_Naur

xxiii
 Charles Peirce: http://en.wikipedia.org/wiki/Charles_Sanders_Peirce

xxiv
 http://www.helsinki.fi/science/commens/dictionary.html

xxv
 Haack, Susan. Manifesto of a Passionate Moderate: Unfashionable Essays. Chicago: University of Chicago Press,

 page 55 araphrase “precind, preciss precission precissive refers to the dissection of a hypothesis

rather than an expression of determination freely or fully by the interpreter” See 5.44 Collected Works of

Peirce
xxvi

http://www.eclipse.org/Xtext/
xxvii

 Terence Parr http://www.antlr.org/
xxviii

 Laurence Trat http://convergepl.org/
xxix

 Roman Knöll; Mira Mezini; Felix Wolff http://www.pi-programming.org/What.html
xxx

 As in the „language reflection‟ feature See http://en.wikipedia.org/wiki/Reflection_(computer_science)
xxxi

 http://en.wikipedia.org/wiki/M_(programming_language)See also http://blogs.msdn.com/b/modelcitizen/
xxxii

http://en.wikipedia.org/wiki/Oslo_(Microsoft)
xxxiii

 http://en.wikipedia.org/wiki/Object_Constraint_Language
xxxiv

 http://www.eclipse.org/modeling/emf/ See also http://www.eclipse.org/modeling/emft/?project=ecoretools

http://en.wikipedia.org/wiki/Graham_Priest
http://en.wikipedia.org/wiki/Concept_of_Operations
http://en.wikipedia.org/wiki/Source_lines_of_code
http://www.omg.org/mof/
http://en.wikipedia.org/wiki/Meta-Object_Facility
http://domaindrivendesign.org/
http://en.wikipedia.org/wiki/Domain-driven_design
http://en.wikipedia.org/wiki/Euclid
http://en.wikipedia.org/wiki/Peter_Naur
http://en.wikipedia.org/wiki/Charles_Sanders_Peirce
http://www.helsinki.fi/science/commens/dictionary.html
http://www.eclipse.org/Xtext/
http://www.antlr.org/
http://convergepl.org/
http://www.pi-programming.org/What.html
http://en.wikipedia.org/wiki/Reflection_(computer_science)
http://en.wikipedia.org/wiki/M_(programming_language)See
http://en.wikipedia.org/wiki/Oslo_(Microsoft)
http://en.wikipedia.org/wiki/Object_Constraint_Language
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emft/?project=ecoretools

